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PREFACE

Preface 
PV-WAVE:IMSL Mathematics is a powerful tool for mathematical, statistical, 
and scientific computing. This PV-WAVE:IMSL Mathematics Reference docu-
ments the routines that support this functionality. Each function and procedure 
is designed for use in research as well as in technical applications. 

Finding the Appropriate Routine
This PV-WAVE:IMSL Mathematics Reference is organized into 12 chapters. 
Each chapter groups routines with similar computational or analytical capabili-
ties. To locate the appropriate function for a given problem, refer to the 
Contents of Chapter subsection in the introduction to each chapter or the alpha-
betical Summary of Routines in Appendix B.

Often the quickest way to use this PV-WAVE:IMSL Mathematics Reference is to 
find an example similar to your problem and mimic the example. Documented 
routines contain at least one example.

Documentation Organization
Each PV-WAVE:IMSL Mathematics routine conforms to established conven-
tions in programming and documentation. The uniform design of these routines 
makes it easy to use more than one function or procedure in a given application. 
Also, the design consistency enables you to apply your experience with one
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PV-WAVE:IMSL Mathematics function to all other PV-WAVE:IMSL Mathemat-
ics functions.

This manual contains a concise description of each function and procedure. 
Each chapter begins with an introduction containing a Contents of Chapter that 
lists the routines discussed in that chapter and the corresponding page numbers. 
At least one example, including sample input and results, is provided for most 
routines. The documentation for each routine contains of the following 
information:

•  Routine Name — procedure or function name with purpose statement

•  Usage — calling sequence

•  Input/Output Parameters — description of the parameters in the order of 
their occurrence

Input — parameter must be initialized; it is not changed by the function

Input/Output — parameter must be initialized; the routine returns output 
through the parameter; the parameter cannot be a constant or an 
expression

Output — no initialization is necessary; the routine returns output 
through this parameter; the parameter cannot be a constant or an 
expression

•  Returned Value — value returned by the function

•  Keywords — description of keywords available for a particular routine

•  Discussion — discussion of the algorithm and references to detailed 
information

•  Examples — one or more examples showing applications of this routine 
using the required parameters

•  Errors — list of errors that may occur with a particular routine for which a 
user-defined action may be desired

References

References are listed alphabetically by author in Appendix A, References.
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Typographical Conventions
The following typographical conventions are used in this guide:

•  PV-WAVE:IMSL Mathematics code examples appear in a typewriter font. 
For example:

PLOT, temp, s02, Title = ’Air Quality’

•  Comments for commands and program examples are shown in the follow-
ing manner:

PLOT, temp, s02, Title = ’Air Quality’

; This is a comment for the PLOT command. 

Comments are used often to explain code fragments and examples. 

•  PV-WAVE:IMSL Mathematics commands are not case-sensitive. However, 
in this manual, variables are shown in lowercase italics (myvar), function 
and procedure names are shown in uppercase (XYOUTS), keywords are 
shown in mixed case italic (XTitle), and system variables are shown in regu-
lar mixed case type (!Version).

•  A $ at the end of a PV-WAVE:IMSL Mathematics line indicates that the 
current statement is continued on the following line.

This means, for instance, that strings are never split onto two lines without 
the addition of the string concatenation operator (+) or a comma in some 
cases. For example, the following lines would produce an error if entered 
literally in PV-WAVE:IMSL Mathematics:

WAVE> PLOT, x, y, Title = ’Average $ 
Air Temperatures by Two-Hour Periods’

; Note that the string is split onto two lines. This syntax would
; produce an error.

The correct way to enter these lines is:

WAVE> PLOT, x, y, Title = ’Average ’ + $ 
’Air Temperatures by Two-Hour Periods’

; This is the correct way to split a string onto two command
; lines. 

The string concatenation symbol (+) is used at the end of the first line, and 
the split portions of the string are enclosed by delimiters. This is the con-
vention used in this reference whenever a string spans two lines. This is still 
only one command, even though multiple lines are used.

•  Reserved words, such as FOR, IF, and CASE, are always shown in capital 
letters.



xiv  Preface PV-WAVE:IMSL Mathematics Reference

Technical Support
If you have problems installing, unlocking, or running your software, contact 
Visual Numerics Technical Support by calling:

Users outside the U.S., France, Germany, Japan, Korea, Mexico, Taiwan, and 
the U.K. can contact their local agents.

Please be prepared to provide the following information when you call for con-
sultation during Visual Numerics business hours:

• Your license number, a six-digit number that can be found on the packing 
slip accompanying this order. (If you are evaluating the software, just men-
tion that you are from an evaluation site.)

• The name and version number of the product. For example, PV-WAVE 7.0.

• The type of system on which the software is being run. For example, 
SPARCstation, IBM RS/6000, HP 9000 Series 700.

• The operating system and version number. For example, HP-UX 10.2 or 
IRIX 6.5.

• A detailed description of the problem.

Office Location Phone Number 

Corporate Headquarters
Houston, Texas 713-784-3131 

Boulder, Colorado 303-939-8920

France +33-1-46-93-94-20

Germany +49-711-13287-0

Japan +81-3-5211-7760

Korea +82-2-3273-2633

Mexico +52-5-514-9730

Taiwan +886-2-727-2255

United Kingdom +44-1-344-458-700
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FAX and E-mail Inquiries

Contact Visual Numerics Technical Support staff by sending a FAX to:

or by sending E-mail to:

Office Location FAX Number 

Corporate Headquarters 713-781-9260

Boulder, Colorado 303-245-5301

France +33-1-46-93-94-39

Germany +49-711-13287-99

Japan +81-3-5211-7769

Korea +82-2-3273-2634

Mexico +52-5-514-4873

Taiwan +886-2-727-6798

United Kingdom +44-1-344-458-748

Office Location E-mail Address 

Boulder, Colorado support@boulder.vni.com

France support@vni-paris.fr

Germany support@visual-numerics.de

Japan vda-sprt@vnij.co.jp

Korea support@vni.co.kr

Taiwan support@vni.com.tw

United Kingdom support@vniuk.co.uk
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Electronic Services

Service Address 

General e-mail info@boulder.vni.com

Support e-mail support@boulder.vni.com

World Wide Web http://www.vni.com

Anonymous FTP ftp.boulder.vni.com

FTP Using URL ftp://ftp.boulder.vni.com/VNI/

PV-WAVE 
Mailing List: Majordomo@boulder.vni.com

To subscribe 
      include:

subscribe pv-wave YourEmailAddress

To post messages pv-wave@boulder.vni.com



xvii

Introduction

Starting PV-WAVE:IMSL Mathematics 
To start PV-WAVE:IMSL Mathematics, you must first be running PV-WAVE. For 
detailed information on starting PV-WAVE, see the PV-WAVE User’s Guide or the 
installation instructions. 

At the WAVE> prompt, type: 

@math_startup 

You will then see this message: 

PV-WAVE:IMSL Mathematics Toolkit is initialized.

You are now ready to use PV-WAVE:IMSL Mathematics. 

Rows vs Columns 
In this book we use the following convention for 2D arrays: “row” refers to the first 
index of the array and “column” refers to the second. So for a 2D array A, A(i,j) is 
the element in row i and column j.  The PM command makes this easy to visualize: 

a = INTARR( 4, 8 )    &    a(2,5) = 1    &    PM, a

0       0       0       0       0       0       0       0

0       0       0       0       0       0       0       0

0       0       0       0       0       1       0       0

0       0       0       0       0       0       0       0
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Underflow and Overflow
In most cases, PV-WAVE:IMSL Mathematics routines are written so that compu-
tations are not affected by underflow, provided the system (hardware or software) 
replaces an underflow with the value zero. Normally, system error messages indi-
cating underflow can be ignored. 

PV-WAVE:IMSL Mathematics routines also are written to avoid overflow. A pro-
gram that produces system error messages indicating overflow should be examined 
for programming errors such as incorrect input data, mismatch of parameter types, 
or improper dimensions. 

In many cases, the documentation for a function points out common pitfalls that 
can lead to failure of the algorithm.

Missing Values
Some of the routines in this PV-WAVE:IMSL Mathematics Reference allow the data 
to contain missing values. These routines recognize as a missing value the special 
value referred to as “Not a Number” or NaN. The actual value varies on different 
computers, but it can be obtained by reference to function MACHINE.

The manner in which missing values are treated depends on the individual function 
as described in the documentation for that function.

User Errors
PV-WAVE:IMSL Mathematics mathematical functions attempt to detect user 
errors and handle them in a way that provides as much information to the user as 
possible. To do this, five levels of Informational Error severity, in addition to the 
basic PV-WAVE:IMSL Mathematics error-handling facility, are recognized. Fol-
lowing a call to a PV-WAVE:IMSL Mathematics mathematical or statistical 
function, the system variables !Error and !Cmast_Err contain information concern-
ing the current error state. The system variable !Error contains the error number of 
the last error. System variable !Cmast_Err is set to either zero, which indicates that 
an Informational Error did not occur, or to the error code of the last Informational 
Error that did occur.

Errors and Default Actions

When your application returns from a PV-WAVE:IMSL Mathematics mathemati-
cal function, the system variable !Cmast_Err is set either to zero, which indicates 
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that an informational error did not occur, or to the error code for the last Informa-
tional Error that did occur. Internally, there are five levels of  Informational Error 
severity: note, alert, warning, fatal, and terminal. Although PV-WAVE:IMSL 
Mathematics does not allow users to directly manipulate how these errors are inter-
preted internally, some control over the output of error messages is allowed. All 
informational error messages are printed by default. Setting the system variable 
!Quiet to a nonzero value suppresses output of notes, alerts, and warnings.

The system variable !Error remains active during all PV-WAVE:IMSL Mathemat-
ics error states. But when an Informational Error occurs within a mathematical 
function, the system variable !Cmast_Err is used.

What Determines Error Severity

Although your input(s) may be mathematically correct, limitations of the com-
puter’s arithmetic and the algorithm itself can make it impossible to accurately 
compute an answer. In this case, the assessed degree of accuracy determines the 
severity of the error. In instances where the function computes several output quan-
tities and some are not computable, an error condition exists. Its severity depends 
on an assessment of the overall impact of the error.

Functions for Error Handling

With respect to Informational Errors, you can interact with the PV-WAVE:IMSL 
Mathematics error-handling system in two ways: (1) change the default printing 
actions and (2) determine the code of an Informational Error in order to take cor-
rective action. To change the default printing action, set the system variable !Quiet 
to a nonzero value. Use CMAST_ERR_TRANS to retrieve the integer code for an 
informational error.

Use of CMAST_ERR_TRANS to Determine Program Action

In the program segment below, the Cholesky factorization of a matrix is to be per-
formed. If it is determined that the matrix is not nonnegative definite (and often this 
is not immediately obvious), the program takes a different branch:

x = CHNNDFAC, a, fac

; Call CHNNDFAC with a matrix that may not be nonnegative definite.

IF (CMAST_ERROR_TRANS($
’MATH_NOT_NONNNEG_DEFINITE’) eq !Cmast_Err)) THEN ... 

; Check the system variable !Cmast_Err to see if it contains the
; error code for the error NOT_NONNNEG_DEFINITE. 
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CHAPTER

1

Linear Systems 

Contents of Chapter 

Matrix Inversion

General matrix inversion ............................  INV Function

Linear Equations with Full Matrices

Systems involving general matrices ...... LUSOL Function

LU factorization of general 
matrices ..............................................  LUFAC Procedure

Systems involving symmetric 
positive definite matrices ......................  CHSOL Function

Factorization of symmetric positive 
definite matrices ................................. CHFAC Procedure

Linear Least Squares with Full Matrices

Least-squares solution .........................  QRSOL Function

Least-squares factorization ...............  QRFAC Procedure

Singular Value Decomposition (SVD) 
and generalized inverse .................  SVDCOMP Function

Solve and generalized inverse for 
positive semidefinite matrices ......  CHNNDSOL Function
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Factor and generalized inverse 
for positive semidefinite 
matrices ...................................... CHNNDFAC Procedure

Linear constraints ................................. LINLSQ Function

Sparse Matrices 

Solve a sparse system of linear 
equations Ax = b .............................SP_LUSOL Function

Compute an LU factorization of a 
sparse matrix stored in either 
coordinate format or CSC 
format .............................................. SP_LUFAC Function

Solve a general band system of 
linear equations Ax = b .................. SP_BDSOL Function

Compute the LU factorization 
of a matrix stored in band storage 
mode ............................................SP_BDFAC Procedure

Solve a sparse symmetric positive 
definite system of linear equations 
Ax = b ............................................ SP_PDSOL Function

Compute a factorization of a sparse 
symmetric positive definite system of 
linear equations Ax = b ...................SP_PDFAC Function

Solve a symmetric positive definite 
system of linear equations Ax = b 
in band symmetric storage 
mode ......................................... SP_BDPDSOL Function

Compute the RTR Cholesky 
factorization of symmetric positive
definite matrix, A, in band symmetric 
storage mode .............................SP_BDPDFAC Function

Solve a linear system Ax = b 
using the restarted generalized 
minimum residual (GMRES) 
method .......................................... SP_GMRES Function

Solve a real symmetric definite 
linear system using a conjugate 
gradient method .................................... SP_CG Function

Compute a matrix-vector product 
involving a sparse matrix and a 
dense vector ..................................SP_MVMUL Function
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Introduction 

Matrix Inversion

Function INV is used to invert an n x n nonsingular matrix—either real or com-
plex. The inverse also can be obtained by using keyword Inverse in functions 
for solving systems of linear equations. The inverse of a matrix need not be 
computed if the purpose is to solve one or more systems of linear equations. 
Even with multiple right-hand sides, solving a system of linear equations by 
computing the inverse and performing matrix multiplication is usually more 
expensive than the method discussed in the next section.

Solving Systems of Linear Equations 

A square system of linear equations has the form Ax = b, where A is a user-
specified n x n matrix, b is a given n-vector, and x is the solution n-vector. Each 
entry of A and b must be specified by the user. The entire vector x is returned as 
output.

When A is invertible, a unique solution to Ax = b exists. The most commonly 
used direct method for solving Ax = b factors the matrix A into a product of tri-
angular matrices and solves the resulting triangular systems of linear equations. 
Functions that use direct methods for solving systems of linear equations all 
compute the solution to Ax = b. PV-WAVE:IMSL Mathematics functions 
LUSOL, CHSOL, and CHNNDSOL can be used to compute x.

Matrix Factorizations 

In some applications, you may only want to factor the n x n matrix A into a 
product of two triangular matrices. Functions and procedures that end with 
“FAC” are designed to compute these factorizations. Suppose that in addition to 
the solution x of a linear system of equations Ax = b, you want the LU factor-
ization of A. First, use the LUFAC procedure to obtain the LU factorization in a 
condensed format; then, call LUSOL with this factorization and a right-hand 
side b to compute the solution. If the factorization is desired in separate, full 
matrices, the LUFAC procedure can be called with keywords L and U to return 
L and U separately.

Besides the basic matrix factorizations, such as LU and LLT, additional matrix 
factorizations also are provided. For a real matrix A, QR factorization can be 
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computed by the QRFAC procedure. Functions for computing the Singular 
Value Decomposition (SVD) of a matrix are discussed in a later section.

Multiple Right-hand Sides 

Consider the case in which a system of linear equations has more than one 
right-hand side vector. It is most economical to find the solution vectors by first 
factoring the coefficient matrix A into products of triangular matrices. Then, the 
resulting triangular systems of linear equations are solved for each right-hand 
side. When A is a real general matrix, access to the LU factorization of A is 
computed by using the LUFAC procedure. The solution xk for the k-th right-
hand side vector bk is then found by two triangular solves, Lyk = bk and 
Uxk = yk . The LUSOL function is called with the computed factorization and is 
used to solve each right-hand side. This process can be followed when using 
other functions for solving systems of linear equations.

Least-squares Solution and QR Factorization

Least-squares solutions are usually computed for an over-determined system of 
linear equations Am x n x = b, where m > n. A least-squares solution x mini-
mizes the Euclidean length of the residual vector r = Ax – b. The QRSOL 
function computes a unique least-squares solution for x when A has full-column 
rank. If A is rank-deficient, then the base solution for some variables is com-
puted. These variables consist of the resulting columns after the interchanges. 
The QR decomposition, with column interchanges or pivoting, is computed such 
that AP = QR. Here, Q is orthogonal, R is upper-trapezoidal with its diagonal 
elements nonincreasing in magnitude, and P is the permutation matrix deter-
mined by the pivoting. The base solution xB 

is obtained by solving R(PT)x = 
QTb for the base variables. For details, see the Discussion of QRSOL on 
page 30. The QR factorization of a matrix A, such that AP = QR with P speci-
fied by the user, can be computed using the QRFAC procedure.

Singular Value Decomposition and Generalized Inverse 

The SVD of an m by n matrix A is a matrix decomposition, A = USVT. With 
q = min(m, n), the factors Um x q and Vn x q are orthogonal matrices, and Sq x q 
is a nonnegative diagonal matrix with nonincreasing diagonal terms. The 
SVDCOMP function computes the singular values of A by default. By using 
keywords, part or all of the U and V matrices, an estimate of the rank of A, and 
the generalized inverse of A also can be obtained.
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Ill-conditioning and Singularity 

An m x n matrix A is mathematically singular if there is an x ≠ 0 such that 
Ax = 0. In this case, the system of linear equations Ax = b does not have a 
unique solution. On the other hand, a matrix A is numerically singular if it is 
“close” to a mathematically singular matrix. Such problems are called ill-
conditioned. If the numerical results with an ill-conditioned problem are unac-
ceptable, either use more accuracy if it is available (for type float accuracy 
switch to double) or obtain an approximate solution to the system. One form of 
approximation can be obtained using the SVD of A: If q = min(m, n) and

then the approximate solution is given by the following:

The scalars ti,i are defined by 

The user specifies the value of tol. This value determines how “close” the given 
matrix is to a singular matrix. Further restrictions may apply to the number of 
terms in the sum, k ≤ q. For example, there may be a value of k ≤ q such that 
the scalars | (bTui)|, i > k, are smaller than the average uncertainty in the right-
hand side b. This means that these scalars can be replaced by zero, and hence, b 
is replaced by a vector that is within the stated uncertainty of the problem.

Notation

Since many functions and procedures described in this chapter operate on both 
real or complex matrices, the notation AH is used to represent both the transpose 
of A if A is real and the conjugate transpose if A is complex.

Sparse Matrices: Direct Methods

A number of routines are provided that employ direct methods (as opposed to 
iterative methods) for solving problems involving sparse matrices. 

A si i, uivi
T

i 1=

q∑=

xk ti i, bTui( )vii 1=

k∑=

ti i,
si i,

1– if si i, tol 0≥ ≥

0 otherwise






=



6  Chapter 1: Linear Systems PV-WAVE:IMSL Mathematics Reference

For general sparse linear systems, SP_LUFAC and SP_LUSOL form a factor/
solve function pair. If a sparse matrix the problem Ax = b is to be solved for a 
single A, but multiple right-hand sides, b, then SP_LUFAC should first be used 
to compute an LU decomposition of A, then follow multiple calls to SP_LUSOL 
(one for each right-hand side, b). If only one right-hand side, b, is involved then 
SP_LUSOL can be called directly, in which case the factor step is computed 
internally by SP_LUSOL.

For general banded systems, SP_BDSOL and SP_BDFAC form a factor/solve 
pair. The relationship between SP_BSFAC and SP_BDSOL is similar to that of 
SP_LUFAC and SP_LUSOL.

The functions SP_PDFAC and SP_PDSOL are provided for working with sys-
tems involving sparse symmetric positive definite matrices.The relationship 
between SP_PDFAC and SP_PDSOL is similar to that of SP_LUFAC and 
SP_LUSOL.

The functions SP_BDDFAC and SP_BDPDSOL are provided for working with 
systems involving banded symmetric positive definite matrices.The relationship 
between SP_BDPDFAC and SP_BDPDSOL is similar to that of SP_LUFAC 
and SP_LUSOL.

Sparse Matrices: Iterative Methods

Two routines are provided that employ iterative methods (as opposed to direct 
methods) for solving problems involving sparse matrices. 

Direct Methods 

SP_LUFAC LU factorization of general matrices

SP_LUSOL Systems involving general matrices

SP_BDFAC LU factorization of band matrices

SP_BDSOL Systems involving band matrices

SP_PDFAC Factorization of symmetric positive definite matrices

SP_PDSOL Systems involving symmetric positive definite 
matrices

SP_BDPDFAC Cholesky factorization of symmetric positive definite 
matrices in band symmetric storage mode

SP_BDPDSOL Systems involving symmetric positive definite matri-
ces in band symmetric storage mode
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The function SP_GMRES, based on the FORTRAN subroutine GMRESD by H. 
F. Walker, solves the linear system Ax = b using the GMRES method. This 
method is described in detail by Saad and Schultz (1986) and Walker (1988).

The function SP_CG solves the symmetric definite linear system Ax = b using 
the conjugate gradient method with optional preconditioning. This method is 
described in detail by Golub and Van Loan (1983, chapter 10), and in Hageman 
and Young (1981, chapter 7). 

Sparse Matrices: Utilities

Utilities designed to aid with the manipulation of sparse matrices are also pro-
vided. The common operation of matrix-vector multiplication can be efficiently 
executed using the function SP_MVMUL. 

Sparse Matrices: Matrix Storage Modes

The dense linear algebra functions in PV-WAVE require input consisting of 
matrix dimensions and all values for the matrix entries. Clearly, this is not prac-
tical for sparse linear algebra. Three different storage formats can be used for 
the functions in the sparse matrix sections. These methods include:

•  Sparse coordinate storage format 

•  Band storage format 

•  Compressed sparse column (CSC) format

Sparse Coordinate Storage Format 

Only the non-zero elements of a sparse matrix need to be communicated to a 
function. Sparse coordinate storage format stores the value of each matrix entry 
along with that entry’s row and column index. The following system variables 
are defined to support this concept:

!F_SP_ELEM = {f_sp_elem_str, row:0L, col:0L, 
val:float(0.0)}

!D_SP_ELEM = {d_sp_elem_str, row:0L, col:0L, 

Iterative Methods 

SP_GMRES Restarted generalized minimum residual (GMRES) method

SP_CG Conjugate gradient method
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val:double(0.0)}

!C_SP_ELEM = {c_sp_elem_str, row:0L, col:0L, 
val:complex(0.0)}

!Z_SP_ELEM = {z_sp_elem_str, row:0L, col:0L, 
val:dcomplex(0.0)}

As an example consider the 6 x 6 matrix:

The matrix A has 15 non-zero elements, and its sparse coordinate representa-
tion would be

Since this representation does not rely on order, an equivalent form would be

There are different ways this data could be used to initialize. Consider the fol-
lowing program fragment:

A = replicate(!F_sp_elem, 15)

a(*).row = [0, 1, 1, 1, 2, $

 3, 3, 3, 4, 4, $

4, 4, 5, 5, 5]

row 0 1 1 1 2 3 3 3 4 4 4 4 5 5 5

col 0 1 2 3 2 0 3 4 0 3 4 5 0 1 5

val 2 9 -3 -1 5 -2 -7 -1 -1 -5 1 -3 -1 -2 6

row 5 4 3 0 5 1 2 1 4 3 1 4 3 5 4

col 0 0 0 0 1 1 2 2 3 3 3 4 4 5 5

val -1 -1 -2 2 -2 9 5 -3 -5 -7 -1 1 -1 6 -3

A

2 0 0 0 0 0

0 9 3– 1– 0 0

0 0 5 0 0 0

2– 0 0 7– 1– 0

1– 0 0 5– 1 3–

1– 2– 0 0 0 6

=
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a(*).col = [0, 1, 2, 3, 2, $

0, 3, 4, 0, 3, $

4, 5, 0, 1, 5]

a(*).val = [2, 9, -3, -1, 5,$

-2, -7, -1, -1, -5, 1, $

-3, -1, -2, 6]

B = replicate(!F_sp_elem, 15)

b(*).row = [5, 4, 3, 0, 5, $

 1, 2, 1, 4, 3, $

1, 4, 3, 5, 4]

b(*).col = [0, 0, 0, 0, 1, $

1, 2, 2, 3, 3, $

 3, 4, 4, 5, 5]

b(*).val = [-1, -1, -2, 2, -2,$

9, 5, -3, -5, -7, -1, $

1, -1, 6, -3]

Both a and b represent the sparse matrix A.

A sparse symmetric or Hermitian matrix is a special case, since it is only neces-
sary to store the diagonal and either the upper or lower triangle. As an example, 
consider the 5 x 5 linear system:

The Hermitian and symmetric positive definite system solvers in this module 
expect the diagonal and lower triangle to be specified. The sparse coordinate 
form for the lower triangle is given by

row 0 1 2 3 1 2 3

col 0 1 2 3 0 1 2

val (4,0) (4,0) (4,0) (4,0) (1,1) (1,1) (1,1)

H

4 1 i– 0 0

1 i+ 4 1 i– 0

0 1 i+ 4 1 i–

0 0 1 i+ 4

=
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The following program fragment will initialize H.

A = replicate(!C_sp_elem, 7)

a(*).row = [0, 1, 2, 3, 1, 2, 3]

a(*).col = [0, 1, 2, 3, 0, 1, 2]

a(*).val = [COMPLEX(4, 0), COMPLEX(4, 0), $

COMPLEX(4, 0), COMPLEX(4, 0), $

COMPLEX(1, 1), COMPLEX(1, 1), $

COMPLEX(1, 1)] 

There are some important points to note here. Note that H is not symmetric, but 
rather Hermitian. The functions that accept Hermitian data understand this and 
operate assuming that

. 

The Sparse Matrix Module cannot take advantage of the symmetry in matrices 
that are not positive definite. The implication here is that a symmetric matrix 
that happens to be indefinite cannot be stored in this compact symmetric form. 
Rather, both upper and lower triangles must be specified and the sparse general 
solver called.

Band Storage Format

A band matrix is an M x N matrix A with all of its non-zero elements “close” to 
the main diagonal. Specifically, values Aij = 0 if i – j > nlca  or j – i > nuca. 
The integer m = nlca + nuca + 1 is the total band width. The diagonals, other 
than the main diagonal, are called codiagonals. While any M x N matrix is a 
band matrix, band storage format is only useful when the number of non-zero 
codiagonals is much less than N.

In band storage format, the nlca lower codiagonals and the nuca upper codi-
agonals are stored in the rows of an array of size m x N. The elements are 
stored in the same column of the array as they are in the matrix. The values 
Aij inside the band width are stored in the linear array in positions 
[(i-j+nuca+1)* n+j]. This results in a row-major, one-dimensional map-
ping from the two-dimensional notion of the matrix.

hij hji=
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For example, consider the 5 x 5 matrix A with 1 lower and 2 upper codiagonals: 

In band storage format, the data would be arranged as: 

This data would be then be stored contiguously, row-major order, in an array of 
length 20.

As an example, consider the following tridiagonal matrix: 

The following code segment will store this matrix in band storage format:

a = [0, 1, 2, 3, 4, $

10, 20, 30, 40, 50, $

5, 6, 7, 8, 0]

A

A0 0, A0 1, A0 2, 0 0

A1 0, A1 1, A1 2, A1 3, 0

0 A2 1, A2 2, A2 3, A2 4,

0 0 A3 2, A3 3, A3 4,

0 0 0 A4 3, A4 4,

=

0 0 A0 2, A1 3, A2 4,

0 A0 1, A1 2, A2 3, A3 4,

A0 0, A1 1, A2 2, A3 3, A4 4,

A1 0, A2 1, A3 2, A4 3, 0

A

10 1 0 0 0

5 20 2 0 0

0 6 30 3 0

0 0 7 40 4

0 0 0 8 50

=
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As in the sparse coordinate representation, there is a space saving symmetric 
version of band storage. As an example, we look at the following 5 x 5 symmet-
ric problem: 

In band symmetric storage format, the data would be arranged as: 

The following Hermitian example illustrate the procedure: 

The following program fragments stores H in h, using band symmetric storage 
format:

h = complexarr(15)

h(0:1) = 0

h(2:4) = complex(1,1)

h(5) = 0

h(6:9) = complex(1,1)

h(10:14) = 8

Choosing Between Banded and Coordinate Forms

It is clear that any matrix can be stored in either sparse coordinate or band for-
mat. The choice depends on the sparsity pattern of the matrix. A matrix with all 
non-zero data stored in bands close to the main diagonal would probably be a 

A

A0 0, A0 1, A0 2, 0 0

A0 1, A1 1, A1 2, A1 3, 0

A0 2, A1 2, A2 2, A2 3, A2 4,

0 A1 3, A2 3, A3 3, A3 4,

0 0 A2 4, A3 4, A4 4,

=

0 0 A0 2, A1 3, A2 4,

0 A0 1, A1 2, A2 3, A3 4,

A0 0, A1 1, A2 2, A3 3, A4 4,

H

8 1 i+ 1 i+ 0 0

1 i– 8 1 i+ 1 i+ 0

1 i– 1 i– 8 1 i+ 1 i+

0 1 i– 1 i– 8 1 i+

0 0 1 i– 1 i– 8

=
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good candidate for band format. If non-zero information is scattered more or 
less uniformly through the matrix, sparse coordinate format is the best choice. 
As extreme examples, consider the following two cases. First, consider an 
n x n matrix with all elements on the main diagonal and the (0,n-1) and 
(n-1,0) entries non-zero. The sparse coordinate vector would be n + 2 units 
long. An array of length 2n2 – n would be required to store the band representa-
tion, nearly twice as much storage as a dense solver might require. Secondly, 
consider a tridiagonal matrix with all diagonal, superdiagonal and subdiagonal 
entries non-zero. In band format, an array of length 3n is needed. In sparse 
coordinate format, a vector of length 3n – 2 is required. But the problem is that, 
for instance with floating-point precision on a 32 bit machine, each of those 3n 
– 2 units in coordinate format requires three times as much storage as any of 
the 3n units needed for band representation. This is due to carrying the row and 
column indices in coordinate form. Band storage evades this requirement by 
being essentially an ordered list, and defining location in the original matrix by 
position in the list.

Compressed Sparse Column (CSC) Format

Functions that accept data in coordinate format can also accept data stored in 
the format described in the Users’ Guide for the Harwell-Boeing Sparse Matrix 
Collection. The scheme is column oriented, with each column held as a sparse 
vector, represented by a list of the row indices of the entries in an integer array 
and a list of the corresponding values in a separate float (double, complex, 
dcomplex) array. Data for each column are stored consecutively and in order. A 
separate integer array holds the location of the first entry of each column and 
the first free location. Only entries in the lower triangle and diagonal are stored 
for symmetric and Hermitian matrices. All arrays are based at zero, which is in 
contrast to the Harwell-Boeing test suite’s one-based arrays. 

As in the Harwell-Boeing Users’ Guide, we illustrate the storage scheme with 
the following example. The 5x5 matrix: 

would be stored in the arrays colptr (location of first entry), rowind (row indi-
ces), and values (non-zero entries) as follows: 

1 3– 0 1– 0

0 0 2– 0 3

2 0 0 0 0

0 4 0 4– 0

5 0 5– 0 6
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INV Function 
Computes the inverse of a real or complex, square matrix. 

Usage

result = INV(a)

Input Parameters 

a — Two-dimensional matrix containing the matrix to be inverted.

Returned Value

result — A two-dimensional matrix containing the inverse of the matrix A.

Input Keywords

Double — If present and nonzero, double precision is used.

Example 
RM, a, 3, 3

; Define the matrix to be inverted.

row 0: 1 3 3

row 1: 1 3 4

row 2: 1 4 4

ainv = INV(a)

; Call INV to perform the inversion.

PM, a

; Output the original matrix.

 1.00000      3.00000      3.00000

Subscripts 0 1 2 3 4 5 6 7 8 9 10

colptr 0 3 5 7 9 11

rowind 0 4 2 3 0 1 4 0 3 4 1

values 1 5 2 4 -3 -2 -5 -1 -4 6 3
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 1.00000      3.00000      4.00000

 1.00000      4.00000      4.00000

PM, ainv

; Output the computed inverse.

 4.00000     -0.00000     -3.00000

 0.00000     -1.00000      1.00000

 -1.00000 1.00000      0.00000

PM, a # ainv

; Check the results.

 1.00000      0.00000      0.00000

 0.00000      1.00000      0.00000

 0.00000      0.00000      1.00000

Fatal Errors

MATH_SINGULAR_MATRIX — Input matrix is singular. 

LUSOL Function 
Solves a general system of real or complex linear equations Ax = b. 

Usage

result = LUSOL(b [, a])

Input Parameters 

b — One-dimensional matrix containing the right-hand side.

a — Two-dimensional matrix containing the coefficient matrix. Element A(i, j) 
contains the j-th coefficient of the i-th equation.

Returned Value

result — A one-dimensional array containing the solution of the linear system 
Ax = b. 
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Input Keywords

Double — If present and nonzero, double precision is used.

Transpose — If present and nonzero, AH x = b is solved.

Pivot — Specifies a named variable into which the pivot sequence for the fac-
torization, computed by the LUFAC procedure, is stored. Keywords Pivot and 
Factor must be used together. Keywords Pivot and Condition cannot be used 
together. 

Output Keywords

Factor — Specifies a named variable in which the LU factorization of A, com-
puted by the LUFAC procedure, is stored. The strictly lower-triangular part of 
this array contains information necessary to construct L, and the upper-triangu-
lar part contains U. Keywords Pivot and Factor must be used together. 
Keywords Factor and Condition cannot be used together.

Condition — Specifies a named variable into which an estimate of the L1 con-
dition number is stored. This keyword cannot be used with keywords Pivot and 
Factor.

Inverse — Specifies a named variable into which the inverse of the matrix A is 
stored.

Discussion

Function LUSOL solves a system of linear algebraic equations with a real or 
complex coefficient matrix A. Any of several related computations can be per-
formed by using keywords. These extra tasks include solving AHx = b or 
computing the solution of Ax = b given the LU factorization of A. The function 
first computes the LU factorization of A with partial pivoting such that 
L–1PA = U. 

The matrix U is upper-triangular, while L–1A ≡ Pn – 1 Ln – 2Pn – 2...L0 P0 A ≡ U. 
The factors Pi and Li are defined by the partial pivoting. Each Pi is an inter-
change of row i with row j ≥ i. Thus, Pi is defined by that value of j. Every 
Li = miei

T is an elementary elimination matrix. The vector mi is zero in entries 
0, ... , i – 1 . This vector is stored as column i in the strictly lower-triangular 
part of the working matrix containing the decomposition information. 

The factorization efficiency is based on a technique of “loop unrolling and jam-
ming” due to Dr. Leonard J. Harding of the University of Michigan, Ann Arbor, 
Mich. The solution of the linear system is then found by solving two simpler 



LUSOL Function  17

systems, y = L – 1 b and x = U –1 y. When the solution to the linear system or 
the inverse of the matrix is sought, an estimate of the L1 condition number of A 
is computed using the same algorithm as in  Dongarra et al. (1979). If the esti-
mated condition number is greater than 1 / ε (where ε is the machine precision), 
a warning message is issued. This indicates that very small changes in A may 
produce large changes in the solution x. Function LUSOL fails if U, the upper-
triangular part of the factorization, has a zero diagonal element.

Example 1: Solving a System

This example solves a system of three linear equations. This is the simplest use 
of the function. The equations are as follows:

x0 + 3x1 + 3x2 = 1

x0 + 3x1 + 4x2 = 4

x0 + 4x1 + 3x2 = –1

RM, a, 3, 3

; Input a matrix containing the coefficients.

row 0: 1 3 3

row 1: 1 3 4

row 2: 1 4 3

RM, b, 3, 1

; Input a vector containing the right-hand side.

row 0: 1

row 1: 4

row 2: -1

x = LUSOL(b, a)

; Call LUSOL to compute the solution.

PM, x, Title = ’Solution’

; Print solution and residual.

Solution

 -2.00000

 -2.00000

 3.00000

PM, a # x - b, Title = ’Residual’

Residual

     0.00000
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     0.00000

     0.00000

Example 2: Transpose Problem

In this example, the transpose problem AHx = b is solved.

RM, a, 3, 3

; Input the matrix containing the coefficients.

row 0: 1 3 3

row 1: 1 3 4

row 2: 1 4 3

RM, b, 3, 1

; Input the vector containing the right-hand side.

row 0: 1

row 1: 4

row 2: -1

x = LUSOL(b, a, /Transpose)

; Call LUSOL with keyword Transpose set.

PM, x, Title = ’Solution’

; Print the solution and the residual.

Solution

      4.00000

     -4.00000

      1.00000

PM, TRANSPOSE(a) # x - b, Title = ’Residual’

Residual

      0.00000

      0.00000

      0.00000

Example 3: Solving with Multiple Right-hand Sides 

This example computes the solution of two systems. Only the right-hand sides 
differ. The matrix and first right-hand side are given in the initial example. The 
second right-hand side is the vector c = [0.5, 0.3, 0.4]T. The factorization infor-
mation is computed by procedure LUFAC and is used to compute the solutions 
in calls to LUSOL. 

RM, a, 3, 3

; Input the coefficient matrix.
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row 0: 1 3 3

row 1: 1 3 4

row 2: 1 4 3

RM, b, 3, 1

; Input the first right-hand side.

row 0: 1

row 1: 4

row 2: -1

RM, c, 3, 1

; Input the second right-hand side.

row 0: .5

row 1: .3

row 2: .4

LUFAC, a, pvt, fac

; Call LUFAC to factor the coefficient matrix.

x = LUSOL(b, Factor = fac, Pivot = pvt)

; Call LUSOL with the factored form of the coefficient matrix and the
; first right-hand side.

PM, x, Title = ’Solution’

; Print the solution of Ax = b.

Solution

     -2.00000

     -2.00000

      3.00000

PM, a # x - b, Title = ’Residual’

Residual

      0.00000

      0.00000

      0.00000

y = LUSOL(c, Factor = fac, Pivot = pvt)

; Call LUSOL with the factored form of the coefficient matrix and the
; second right-hand side.

PM, y, Title = ’Solution’

; Print the solution of Ax = b.

Solution

     1.40000

    -0.100000

    -0.200000
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PM, a # y - c, $

Title = ’Residual’, Format = ’(f8.5)’

Residual

  0.00000

  0.00000

  0.00000

Warning Errors

MATH_ILL_CONDITIONED — Input matrix is too ill-conditioned. An estimate 
of the reciprocal of its L1 condition number is #. The solution might not be 
accurate.

Fatal Errors

MATH_SINGULAR_MATRIX — Input matrix is singular.

LUFAC Procedure 
Computes the LU factorization of a real or complex matrix. 

Usage

LUFAC, a [, pivot [, fac]]

Input Parameters 

a — Two-dimensional matrix containing the coefficient matrix. Element A (i, j) 
contains the j-th coefficient of the i-th equation.

Output Parameters

pivot — One-dimensional matrix containing the pivot sequence of the 
factorization. 

fac — Two-dimensional matrix containing the LU factorization of A. The 
strictly lower-triangular part of this matrix contains information necessary to 
construct L, and the upper-triangular part contains U. 
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Input Keywords

Double — If present and nonzero, double precision is used. 

Transpose — If present and nonzero, ATX=b is solved. 

Output Keywords

Condition — Specifies a named variable into which an estimate of the L1 con-
dition number is stored. 

L — Specifies a named variable into which the strictly lower-triangular matrix 
L of the LU factorization is stored.

U — Specifies a named variable into which the upper-triangular matrix U of the 
LU factorization is stored.

PA — Specifies a named variable into which the matrix resulting from apply-
ing the pivot permutation to A is stored. 

Inverse — Specifies a named variable into which the inverse of the matrix A is 
stored.

Discussion

Any of several related computations can be performed by using keywords. 
These extra tasks include computing the LU factorization of AT, computing an 
estimate of the L1 condition number, and returning L or U separately.

The LUFAC procedure computes the LU factorization of A with partial pivot-
ing such that L–1PA = U. The matrix U is upper-triangular, while
L–1A ≡ Pn – 1 Ln – 2Pn – 2...L0 P0 A ≡ U. The factors Pi and Li are defined by the 
partial pivoting. Each Pi is an interchange of row i with row i ≥ j. Thus, Pi is 
defined by that value of j. Every Li = miei

T is an elementary elimination matrix. 
The vector mi is zero in entries 0, ..., i – 1. This vector is stored as column i in 
the strictly lower-triangular part of the working array containing the decomposi-
tion information.

The factorization efficiency is based on a technique of “loop unrolling and jam-
ming” due to Dr. Leonard J. Harding of the University of Michigan, Ann Arbor, 
Mich. When the inverse of the matrix is sought, an estimate of the L1 condition 
number of A is computed using the same algorithm as in Dongarra et al. (1979). 
If the estimated condition number is greater than 1 / ε (where ε is the machine 
precision), a warning message is issued. This indicates that very small changes 



22  Chapter 1: Linear Systems PV-WAVE:IMSL Mathematics Reference

in  A may produce large changes in the solution x. The LUFAC procedure fails 
if U, the upper-triangular part of the factorization, has a zero diagonal element.

Example 1

This example computes the LU factorization of a matrix and prints it out in the 
default form with the information needed to construct L and U combined in one 
array. The matrix is as follows:

RM, a, 3, 3

; Input the matrix to be factored.

row 0: 1 3 3

row 1: 1 3 4

row 2: 1 4 3

LUFAC, a, pvt, fac

; Factor the matrix by calling LUFAC.

PM, fac, Title = ’LU factors of A’

; Print the results.

LU factors of A

      1.00000      3.00000      3.00000

     -1.00000      1.00000      0.00000

     -1.00000     -0.00000      1.00000

PM, pvt, Title = ’Pivot sequence’

Pivot sequence

           1

           3

           3

Example 2

This example computes the factorization, uses keywords to return the factoriza-
tion in separate named variables, and returns the original matrix after the pivot 
permutation is applied.

RM, a, 3, 3

1 3 3

1 3 4

1 4 3
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; Input the matrix to be factored.

row 0: 1 3 3

row 1: 1 3 4

row 2: 1 4 3

LUFAC, a, L = l, U = u, PA = pa

; Call LUFAC with the keywords L and U.

PM, l, Title = ’L’

; Print the results.

L

      1.00000      0.00000      0.00000

      1.00000      1.00000      0.00000

      1.00000      0.00000      1.00000

PM, u, Title = ’U’

U

      1.00000      3.00000      3.00000

      0.00000      1.00000      0.00000

      0.00000      0.00000      1.00000

PM, l # u - pa, $

Title = ’Residual: L # U - PA’

Residual: L # U - PA

      0.00000      0.00000      0.00000

      0.00000      0.00000      0.00000

      0.00000      0.00000      0.00000

Warning Errors

MATH_ILL_CONDITIONED — Input matrix is too ill-conditioned. An estimate 
of the reciprocal of its L1 condition number is #. The solution might not be 
accurate. 

Fatal Errors

MATH_SINGULAR_MATRIX — Input matrix is singular. 
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CHSOL Function 
Solves a symmetric positive definite system of real or complex linear equations 
Ax = b. 

Usage

result = CHSOL(b [, a])

Input Parameters 

b — One-dimensional matrix containing the right-hand side.

a — Two-dimensional matrix containing the coefficient matrix. Matrix A (i, j) 
contains the j-th coefficient of the i-th equation.

Returned Value 

result — The solution of the linear system Ax = b. 

Input Keywords

Double — If present and nonzero, double precision is used.

Output Keywords

Factor — Specifies a named variable in which the LLH factorization of A is 
stored. The lower-triangular part of this matrix contains L, and the upper-trian-
gular part contains LH. Keywords Condition and Factor cannot be used together. 

Condition — Specifies a named variable into which an estimate of the L1 con-
dition number is stored. This keyword cannot be used with Factor. Keywords 
Condition and Factor cannot be used together. 

Inverse — Specifies a named variable into which the inverse of the matrix A is 
stored. This keyword is not allowed if A is complex. 

Discussion

Function CHSOL solves a system of linear algebraic equations having a sym-
metric positive definite coefficient matrix A. The function first computes the 
Cholesky factorization LLH of A. The solution of the linear system is then found 
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by solving the two simpler systems, y = L–1b and x = L–Hy. An estimate of the 
L1 condition number of A is computed using the same algorithm as in 
Dongarra et al. (1979). If the estimated condition number is greater than 1 / ε 
(where ε is the machine precision), a warning message is issued. This indicates 
that very small changes in A may produce large changes in the solution x.

Function CHSOL fails if L, the lower-triangular matrix in the factorization, has 
a zero diagonal element.

Example 1
RM, a, 3, 3

; Define the coefficient matrix.

row 0:  1  -3  2

row 1: -3  10 -5

row 2:  2  -5  6

RM, b, 3, 1

; Define the right-hand side.

row 0: 27

row 1: -78

row 2:  64

x = CHSOL(b, a)

; Call CHSOL to compute the solution.

PM, x, Title = ’Solution’

Solution

      1.00000

     -4.00000

      7.00000

PM, a # x - b, Title = ’Residual’

Residual

      0.00000

      0.00000

      0.00000

Example 2

In this example, a system of five linear equations with Hermitian positive defi-
nite coefficient matrix is solved. The equations are as follows:
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2x0 + (–1 + i ) x1 = 1 + 5i

(–1 –i ) x0 + 4x1 + (1 + 2i ) x2 = 12 – 6i

(–1 –2i ) x1 + 10x2 + 4ix3 = 1 + (–16i )

(–4ix2) + 6x3 + (i + 1)x4 = –3 –3i

(1 – i ) x3 + 9x4 = 25 + 16i

RM, a, 5, 5, /Complex

; Input the complex matrix A.

row 0: 2       (-1,1) 0      0      0

row 1: (-1,-1) 4      (1,2)  0      0

row 2: 0       (1,-2) 10     (0,4)  0

row 3: 0       0      (0,-4) 6      (1,1)

row 4: 0       0      0      (1,-1) 9

RM, b, 5, 1, /Complex

; Input the right-hand side.

row 0: (1, 5)

row 1: (12, -6)

row 2: (1, -16)

row 3: (-3, -3)

row 4: (25, 16)

x = CHSOL(b, a)

; Compute the solution.

PM, x, Title = ’Solution’, Format = ’("(",f8.5,",",f8.5,")")’

; Output the results.

Solution

( 2.00000, 1.00000)

( 3.00000,-0.00000)

(-1.00000,-1.00000)

( 0.00000,-2.00000)

( 3.00000, 2.00000)

PM, a # x - b, Title = ’Residual’, Format = 
’("(",f8.5,",",f8.5,")")’

Residual

( 0.00000, 0.00000)

( 0.00000,-0.00000)

( 0.00000, 0.00000)

( 0.00000, 0.00000)
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( 0.00000, 0.00000)

Warning Errors

MATH_ILL_CONDITIONED — Input matrix is too ill-conditioned. An estimate 
of the reciprocal of its L1 condition number is #. The solution might not be 
accurate.

Fatal Errors

MATH_NONPOSITIVE_MATRIX — Leading # by # submatrix of the input 
matrix is not positive definite.

MATH_SINGULAR_MATRIX — Input matrix is singular.

MATH_SINGULAR_TRI_MATRIX — Input triangular matrix is singular. The 
index of the first zero diagonal element is #.

CHFAC Procedure 
Computes the Cholesky factor, L, of a real or complex symmetric positive defi-
nite matrix A, such that A = LLH.

Usage

CHFAC, a, fac

Input Parameters 

a — Two-dimensional matrix containing the coefficient matrix. Element A (i, j) 
contains the j-th coefficient of the i-th equation.

Output Parameters

fac — Two-dimensional matrix containing the Cholesky factorization of A. 
Note that fac contains L in the lower triangle and LH in the upper triangle.

Input Keywords

Double — If present and nonzero, double precision is used.
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Output Keywords

Condition — Specifies a named variable into which an estimate of the L1 con-
dition number is stored. 

Inverse — Specifies a named variable into which the inverse of the matrix A is 
stored. This keyword is not allowed if A is complex.

Discussion

Procedure CHFAC computes the Cholesky factorization LLH of a symmetric 
positive definite matrix A. When the inverse of the matrix is sought, an estimate 
of the L1 condition number of A is computed using the same algorithm as in 
Dongarra et al. (1979). If the estimated condition number is greater than 
1 / ε (where ε is the machine precision), a warning message is issued. This 
indicates that very small changes in A may produce large changes in the solu-
tion x.

The CHFAC function fails if L, the lower-triangular matrix in the factorization, 
has a zero diagonal element.

Example

This example computes the Cholesky factorization of a 3 x 3 matrix.

RM, a, 3, 3

; Define the matrix A.

row 0:  1  -3  2

row 1: -3  10 -5

row 2:  2  -5  6

CHFAC, a, fac

; Call CHFAC to compute the factorization.

PM, fac, Title = ’Cholesky factor’

Cholesky factor

      1.00000     -3.00000      2.00000

     -3.00000      1.00000      1.00000

      2.00000      1.00000      1.00000

Warning Errors

MATH_ILL_CONDITIONED — Input matrix is too ill-conditioned. An estimate 
of the reciprocal of its L1 condition number is #. The solution might not be 
accurate.
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Fatal Errors

MATH_NONPOSITIVE_MATRIX — Leading # by # submatrix of the input 
matrix is not positive definite.

MATH_SINGULAR_MATRIX — Input matrix is singular.

MATH_SINGULAR_TRI_MATRIX — Input triangular matrix is singular. The 
index of the first zero diagonal element is #.

QRSOL Function 
Solves a real linear least-squares problem Ax = b.

Usage

result = QRSOL(b [, a])

Input Parameters 

b — Matrix containing the right-hand side.

a — (Optional) Two-dimensional matrix containing the coefficient matrix. Ele-
ment A (i, j) contains the j-th coefficient of the i-th equation.

Returned Value 

result — The solution, x, of the linear least-squares problem Ax = b.

Input Keywords

Auxqr — Specifies a named variable in which the matrix containing the scalars 
τk of the Householder transformations that define the decomposition, as com-
puted in the procedure QRFAC, is stored. Keywords Auxqr, Pivot, and Qr must 
be used together. 

Double — If present and nonzero, double precision is used.

Qr — Specifies a named variable in which the matrix containing the House-
holder transformations that define the decomposition, as computed in the 
procedure QRFAC, is stored. Keywords Auxqr, Pivot, and Qr must be used 
together. 
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Tolerance — Nonnegative tolerance used to determine the subset of columns of 
A to be included in the solution.

Default: Tolerance = SQRT(ε), where ε is machine precision

Output Keywords

Residual — Specifies a named variable in which the matrix containing the 
residual vector b – Ax is stored. 

Basis — Named variable containing an integer specifying the number of col-
umns used in the solution. The value Basis = k, if |rk,k| < Tolerance*|r0,0| and
|ri,i| ≥ Tolerance*|r0,0| for i = 0, 1, …, k – 1. For more information on the use of 
this option, see the Discussion section below. 

Input/Output Keywords

Pivot — Specifies a named variable in which the array containing the desired 
variable order and usage information is stored. Keywords Auxqr, Pivot, and Qr 
must be used together. 

On input, if Pivot (k) > 0, then column k of A is an initial column. If 
Pivot (k) = 0, then the column of A is a free column and can be interchanged in 
the column pivoting. If Pivot (k) < 0, then column k of A is a final column. If 
all columns are specified as initial (or final) columns, then no pivoting is per-
formed. (The permutation matrix P is the identity matrix in this case.)

On output, Pivot (k) contains the index of the column of the original matrix that 
has been interchanged into column k.

Default: Pivot (*) = 0

NOTE  If QRSOL is used to solve a problem previously factored in procedure 
QRFAC, the matrix specified by Pivot should contain the same information that 
parameter pivot of QRFAC contained upon output.

Discussion

Function QRSOL solves a system of linear least-squares problems Ax = b with 
column pivoting. It computes a QR factorization of the matrix AP, where P is 
the permutation matrix defined by the pivoting, and computes the smallest inte-
ger k satisfying |rk,k| < Tolerance*|r0,0| to the output keyword Basis. 
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Householder transformations 

Qk = I – τkukuk
T, k = 0, ..., min(m – 1, n) – 1 

are used to compute the factorization. The decomposition is computed in the 
form 
Qmin (m – 1, n) – 1 ... Q0 AP = R, so AP = QR where Q = Q0 ... Qmin (m – 1, n) – 1. 
Since each Householder vector uk has zeros in the first k + 1 entries, it is stored 
as part of column k of Qr. The upper-trapezoidal matrix R is stored in the 
upper-trapezoidal part of the first min(m, n) rows of Qr. The solution x to the 
least-squares problem is computed by solving the upper-triangular system of lin-
ear equations
R (0:k, 0:k) y (0:k) = (QTb) (0:k) with k = Basis – 1. The solution is completed 
by setting y (k:n – 1) to zero and rearranging the variables, x = Py.

If Qr and Auxqr are specified, then the function computes the least-squares 
solution to Ax = b given the QR factorization previously defined. There are 
Basis columns used in the solution. Hence, in the case that all columns are free, 
x is computed as described in the default case.

Example 

This example illustrates the least-squares solution of four linear equations in 
three unknowns by using column pivoting. The problem is equivalent to least-
squares quadratic polynomial fitting to four data values. The polynomial is writ-
ten as 
p(t) = x0 + tx1 + t2x2 and the data pairs (ti, bi ), ti = 2(i + 1), i = 0, 1, 2, 3. The 
solution to Ax = b is returned by function QRSOL.

RM, a, 4, 3

; Define the coefficient matrix.

row 0:  1 2 4

row 1:  1 4 16

row 2:  1 6 36

row 3:  1 8 64

RM, b, 4, 1

; Define the right-hand side.

row 0:  4.999

row 1:  9.001

row 2:  12.999

row 3:  17.001

x = QRSOL(b, a)

; Call QRSOL.

PM, x, Title = ’Solution’, Format = ’(f8.5)’
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; Output the results.

Solution

 0.99900

 2.00020

 0.00000

PM, a # x - b, Title = ’Residual’, $

Format = ’(f10.7)’

Residual

 0.0004015

-0.0011997

 0.0012007

-0.0004005

Fatal Errors

MATH_SINGULAR_TRI_MATRIX — Input triangular matrix is singular. The 
index of the first zero diagonal term is #.

QRFAC Procedure 
Computes the QR factorization of a real matrix A.

Usage

QRFAC, a [, pivot [, auxqr, qr]]

Input Parameters 

a — Two-dimensional matrix containing the coefficient matrix. Element A(i,j) 
contains the j-th coefficient of the i-th equation. 

Input/Output Keywords 

pivot — One-dimensional matrix containing the desired variable order and 
usage information.

On input, if pivot (k) > 0, then column k of A is an initial column. If
pivot (k) = 0, then the column of A is a free column and can be interchanged in 
the column pivoting. If pivot (k) < 0, then column k of A is a final column. If all 
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columns are specified as initial (or final) columns, then no pivoting is per-
formed. (The permutation matrix P is the identity matrix in this case.)

Default: pivot (*) = 0

On output, pivot (k) contains the index of the column of the original matrix that 
has been interchanged into column k.

Output Parameters

auxqr — Matrix containing the scalars τk of the Householder transformations 
that define the decomposition.

qr — Matrix containing the Householder transformations that define the 
decomposition.

Input Keywords

Double — If present and nonzero, double precision is used.

Tolerance — Nonnegative tolerance used to determine the subset of columns of 
A to be included in the solution.

Default: Tolerance = SQRT(ε), where ε is machine precision

Output Keywords

Basis — Named variable into which an integer containing the number of col-
umns used in the solution is stored. The value Basis = k, 
if |rk,k| < Tolerance*|r0,0| and |ri,i| ≥ Tolerance*|r0,0| for i = 0, 1, …, k – 1. For 
more information on the use of this option, see the Discussion section which 
follows.

AP — Specifies a named variable into which the product AP of the identity 
AP = QR is stored. This keyword is useful when attempting to compute the 
residual AP – QR.

Q — Specifies a named variable in which the two-dimensional matrix contain-
ing the orthogonal matrix of the AP = QR factorization is stored.

R — Specifies a named variable in which the two-dimensional matrix contain-
ing the upper-triangular matrix of the AP = QR decomposition is stored.
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Discussion

The QRFAC procedure computes a QR factorization of the matrix AP, where P 
is the permutation matrix defined by the pivoting and computes the smallest 
integer k satisfying |rk,k| < Tolerance*|r0,0| to the output keyword Basis. 

Householder transformations 

Qk = I – τkukuk
T, k = 0, ..., min(m – 1, n) – 1 

are used to compute the factorization. The decomposition is computed in the 
form Qmin (m – 1, n) – 1 ... Q0AP = R, so AP = QR where 
Q = Q0 ... Qmin (m – 1, n) – 1. Since each Householder vector uk has zeros in the 
first k + 1 entries, it is stored as part of column k of Qr. The upper-trapezoidal 
matrix R is stored in the upper-trapezoidal part of the first min(m, n) rows of 
Qr. 

When computing the factorization, the procedure computes the QR factoriza-
tion of AP with P defined by the input pivot and by column pivoting among 
“free” columns. Before the factorization, initial columns are moved to the 
beginning of the array A and the final columns to the end. Neither initial nor 
final columns are permuted further during the computation. Only the free col-
umns are moved.

Example 

Using the same data as the first example given for function QRSOL, the QR 
factorization of the coefficient matrix is computed. Using keywords, the factor-
ization is returned in the full matrices, rather than the default condensed format.

RM, a, 4, 3

; Define the coefficient matrix.

row 0:  1 2 4

row 1:  1 4 16

row 2:  1 6 36

row 3:  1 8 64

QRFAC, a, pvt, Q = q, R = r, AP = ap

; Call QRFAC using keywords Q, R, and AP.

PM, q, Title = ’Q’, Format = ’(4f12.6)’

; Output the results.

Q

   -0.500000    0.670820    0.500000    0.223607

   -0.500000    0.223607   -0.500000   -0.670820

   -0.500000   -0.223607   -0.500000    0.670820

   -0.500000   -0.670820    0.500000   -0.223607
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PM, r, Title = ’R’, Format = ’(3f12.6)’

R

   -2.000000  -10.000000  -60.000000

    0.000000   -4.472136  -44.721359

    0.000000    0.000000    8.000001

    0.000000    0.000000    0.000000

PM, pvt, Title = ’Pvt’

Pvt

           1

           2

           3

PM, q # r - ap, Title = ’Residual’, $

Format = ’(3f12.6)’

Residual

    0.000000    0.000000    0.000002

    0.000000    0.000000   -0.000002

    0.000000    0.000000    0.000000

    0.000000    0.000000    0.000000

Fatal Errors

MATH_SINGULAR_TRI_MATRIX — Input triangular matrix is singular. The 
index of the first zero diagonal term is #.
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SVDCOMP Function 
Computes the singular value decomposition (SVD), A = USVT, of a real or com-
plex rectangular matrix A. An estimate of the rank of A also can be computed.

Usage

result = SVDCOMP(a)

Input Parameters

a — Two-dimensional matrix containing the coefficient matrix. Element A (i, j) 
contains the j-th coefficient of the i-th equation.

Returned Value

result — A one-dimensional array containing the ordered singular values of A. 

Input Keywords

Double — If present and nonzero, double precision is used.

Tol_Rank — Specifies a named variable containing the tolerance used to deter-
mine when a singular value is negligible and replaced by the value zero. If 
Tol_Rank > 0, then a singular value si,i is considered negligible if 
si,i ≤ Tol_Rank. If Tol_Rank < 0, then a singular value si,i is considered negligi-
ble if si,i ≤ Tol_Rank * ||A||infinity. 

In this case, |Tol_Rank| should be an estimate of relative error or uncertainty in 
the data.

Output Keywords

Rank — Specifies a named variable into which an estimate of the rank of A is 
stored.

U — Specifies a named variable into which the left-singular vectors of A are 
stored.

V — Specifies a named variable into which the right-singular vectors of A are 
stored.
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Inverse — Specifies a named variable into which the generalized inverse of the 
matrix A is stored.

Discussion

Function SVDCOMP computes the singular value decomposition of a real or 
complex matrix A. It first reduces the matrix A to a bidiagonal matrix B by pre- 
and post-multiplying Householder transformations. Then, the singular value 
decomposition of B is computed using the implicit-shifted QR algorithm. An 
estimate of the rank of the matrix A is obtained by finding the smallest integer k 
such that sk,k ≤ Tol_Rank or sk,k ≤ Tol_Rank * ||A||infinity. 

Since si + 1, i + 1 ≤ s i,i , it follows that all the s i,i satisfy the same inequality for
i = k, ..., min(m, n) – 2. The rank is set to the value k. If A = USVT, its general-
ized inverse is A+ = VS+UT. Here, S+ = diag (s–1

0,0,..., s–1
i,i, 0, ..., 0). Only 

singular values that are not negligible are reciprocated. If Inverse is specified, 
the function first computes the singular value decomposition of the matrix A. 
The generalized inverse is then computed. The SVDCOMP function fails if the 
QR algorithm does not converge after 30 iterations. 

Example 1

This example computes the singular values of a 6-by-4 real matrix.

RM, a, 6, 4

; Define the matrix.

row 0: 1 2 1 4

row 1: 3 2 1 3

row 2: 4 3 1 4

row 3: 2 1 3 1

row 4: 1 5 2 2

row 5: 1 2 2 3

singvals = SVDCOMP(a)

; Call SVDCOMP.

PM, singvals

; Output the results.

      11.4850

      3.26975

      2.65336

      2.08873
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Example 2

This example computes the singular value decomposition of the 6-by-4 real 
matrix A. Matrices U and V are returned using keywords U and V.

RM, a, 6, 4

; Define the matrix.

row 0: 1 2 1 4

row 1: 3 2 1 3

row 2: 4 3 1 4

row 3: 2 1 3 1

row 4: 1 5 2 2

row 5: 1 2 2 3

singvals = SVDCOMP(a, U = u, V = v)

; Call SVDCOMP with keywords U and V.

PM, singvals, Title = ’Singular values’, $

Format = ’(f12.6)’

; Output the results.

Singular values

   11.485018

    3.269752

    2.653356

    2.088730

PM, u, Title = ’Left singular vectors, U’, $

Format = ’(4f12.6)’

Left singular vectors, U

   -0.380476    0.119671    0.439083   -0.565399

   -0.403754    0.345111   -0.056576    0.214776

   -0.545120    0.429265    0.051392    0.432144

   -0.264784   -0.068320   -0.883861   -0.215254

   -0.446310   -0.816828    0.141900    0.321270

   -0.354629   -0.102147   -0.004318   -0.545800

PM, v, Title = ’Right singular vectors, V’, $

Format = ’(4f12.6)’

Right singular vectors, V

   -0.444294    0.555531   -0.435379    0.551754

   -0.558067   -0.654299    0.277457    0.428336

   -0.324386   -0.351361   -0.732099   -0.485129

   -0.621239    0.373931    0.444402   -0.526066
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Warning Errors

MATH_SLOWCONVERGENT_MATRIX — Convergence cannot be reached after 
30 iterations.

CHNNDSOL Function 
Solves a real symmetric nonnegative definite system of linear equations Ax = b. 
Computes the solution to Ax = b given the Cholesky factor.

Usage

result = CHNNDSOL(b [, a])

Input Parameters 

b — Matrix containing the right-hand side.

a — (Optional) Two-dimensional matrix containing the coefficient matrix. Ele-
ment A(i, j) contains the j-th coefficient of the i-th equation.

Returned Value

result — A solution x of the linear system Ax = b.

Input Keywords

Double — If present and nonzero, double precision is used.

Factor — The LLT factorization of A. The lower-triangular part of this matrix 
contains L, and the upper-triangular part contains LT.

Tolerance — Tolerance used in determining linear dependence.

Default: Tolerance = 100ε, where ε is machine precision

Output Keywords

Inverse — Specifies a named variable into which the inverse of the matrix A is 
stored.
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Discussion

Function CHNNDSOL solves a system of linear algebraic equations having a 
symmetric nonnegative definite (positive semidefinite) coefficient matrix. It first 
computes a Cholesky (LLH or RHR) factorization of the coefficient matrix A.

The factorization algorithm is based on the work of Healy (1968) and proceeds 
sequentially by columns. The i-th column is declared to be linearly dependent 
on the first i – 1 columns if 

where ε (specified by Tolerance) may be set by the user. When a linear depen-
dence is declared, all elements in the i-th row of R (column of L) are set to 
zero.

Modifications due to Farebrother and Berry (1974) and Barrett and Healy 
(1978) for checking for matrices that are not nonnegative definite also are incor-
porated. The CHNNDSOL function declares A to be not nonnegative definite 
and issues an error message if either of the following conditions is satisfied:

1.

2.

Healy’s (1968) algorithm and function CHNNDSOL permit the matrices A and 
R to occupy the same storage. Barrett and Healy (1978), in their remark, neglect 
this fact. The CHNNDSOL function uses

 for  

in condition 2 above to remedy this problem.

If an inverse of the matrix A is required and the matrix is not (numerically) pos-
itive definite, then the resulting inverse is a symmetric g2 inverse of A. For a 
matrix G to be a g2 inverse of a matrix A, G must satisfy conditions 1 and 2 for 
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the Moore-Penrose inverse but generally fail conditions 3 and 4. The four con-
ditions for G to be a Moore-Penrose inverse of A are as follows:

1. AGA = A

2. GAG = G

3. AG is symmetric

4. GA is symmetric

The solution of the linear system Ax = b is computed by solving the factored 
version of the linear system RTRx = b as two successive triangular linear sys-
tems. In solving the triangular linear systems, if the elements of a row of R are 
all zero, the corresponding element of the solution vector is set to zero. For a 
detailed description of the algorithm, see Section 2 in Sallas and Lionti (1988). 
This routine is useful to solve normal equations in a linear least-squares 
problem.

Example 

A solution to a system of four linear equations is obtained. Maindonald (1984, 
pp. 83–86, 104–105) discusses the computations for the factorization and solu-
tion to this problem.

RM, a, 4, 4

; Define the coefficient matrix.

row 0: 36 12 30  6

row 1: 12 20  2 10

row 2: 30  2 29  1

row 3:  6 10  1 14

RM, b, 4, 1

; Define the right-hand side.

row 0: 18

row 1: 22

row 2:  7

row 3: 20

x = CHNNDSOL(b, a)

; Define the right-hand side.

PM, x

; Output the results.

     0.166667

     0.500000
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      0.00000

      1.00000

Warning Errors 

MATH_INCONSISTENT_EQUATIONS_2 — Linear system of equations is 
inconsistent.

MATH_NOT_NONNEG_DEFINITE — Matrix A is not nonnegative definite.

CHNNDFAC Procedure 
Computes the Cholesky factorization of the real matrix A such that A = RTR = 
LLT.

Usage

CHNNDFAC, a, fac

Input Parameters

a — Two-dimensional matrix containing the coefficient matrix. Element A(i, j) 
contains the j-th coefficient of the i-th equation.

Output Parameters

fac — Matrix containing the LLT factorization of A.

Input Keywords

Double — If present and nonzero, double precision is used.

Tolerance — Used in determining linear dependence.

Default: Tolerance = 100 ε, where ε is machine precision

Output Keywords

Inverse — Specifies a named variable into which the inverse of the matrix A is 
stored.
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Discussion

The factorization algorithm is based on the work of  Healy (1968) and pro-
ceeds sequentially by columns. The i-th column is declared to be linearly 
dependent on the first i – 1 columns if 

where ε (specified in Tolerance) may be set by the user. When a linear depen-
dence is declared, all elements in the i-th row of R (column of L) are set to 
zero.

Modifications due to Farebrother and Berry (1974) and Barrett and Healy 
(1978) for checking for matrices that are not nonnegative definite also are incor-
porated. The CHNNDFAC procedure declares A to not be nonnegative definite 
and issues an error message if either of the following conditions is satisfied:

1.

2.

Healy’s (1968) algorithm and the CHNNDFAC procedure permit the matrices A 
and R to occupy the same storage. Barrett and Healy (1978) in their remark 
neglect this fact. Procedure CHNNDFAC uses

 for  

in condition 2 above to remedy this problem.

If an inverse of the matrix A is required and the matrix is not (numerically) pos-
itive definite, then the resulting inverse is a symmetric g2 inverse of A. For a 
matrix G to be a g2 inverse of a matrix A, G must satisfy conditions 1 and 2 for 
the Moore-Penrose inverse but generally fail conditions 3 and 4. The four con-
ditions for G to be a Moore-Penrose inverse of A are as follows:

1. AGA = A

2. GAG = G

3. AG is symmetric

aii rji
2

i 1–

∑– ε aii≤

aii ri i
2

j 0=

i 1–∑– ε aii–<

aik rjirjk

j 0=

i 1–

∑– ε aiiakk> k i>,r 0= and

rij
2

j 0=

i 1–∑ aii
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4. GA is symmetric

Example

The symmetric nonnegative definite matrix in the initial example of CHNND-
SOL is used to compute the factorization only in the first call to CHNNDFAC. 
Then, CHNNDSOL is called with both the LLT factorization and the right-hand 
side vector as the input to compute a solution x.

RM, a, 4, 4

; Define the coefficient matrix.

row 0: 36 12 30 6

row 1: 12 20 2 10

row 2: 30 2 29 1

row 3: 6 10 1 14

CHNNDFAC, a, fac

; Compute the factorization.

PM, fac, Title = ’Factor’, $

Format = ’(4f12.3)’

Factor

       6.000       2.000       5.000       1.000

       2.000       4.000      -2.000       2.000

       5.000      -2.000       0.000       0.000

       1.000       2.000       0.000       3.000

RM, b, 4, 1

; Define the right-hand side.

row 0: 18

row 1: 22

row 2: 7

row 3: 20

x = CHNNDSOL(b, Factor = fac)

; Compute the solution.

PM, x, Title = ’Solution’

; Output the solution.

Solution

     0.166667

     0.500000

      0.00000

      1.00000
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Warning Errors

MATH_INCONSISTENT_EQUATIONS_2 — Linear system of equations is 
inconsistent.

MATH_NOT_NONNEG_DEFINITE — Matrix A is not nonnegative definite. 

LINLSQ Function 
Solves a linear least-squares problem with linear constraints.

Usage

result = LINLSQ( a, b, c, bl, bu, contype)

Input Parameters

a — Two-dimensional array of size nra by nca containing the coefficients of the  
least-squares equations, where nra is the number of least-squares equations and 
nca is the number of variables.

b — One-dimensional array of length nra containing the right-hand sides of the 
least-squares equations.

c — Two-dimensional array of size ncon by nca containing the coefficients of 
the constraints, where ncon is the number of constraints.

bl — One-dimensional array of length ncon containing the lower limit of the 
general constraints. If there is no lower limit on the i-th constraint, then bl(i) 
will not be referenced.

bu — One-dimensional array of length ncon containing the upper limit of the 
general constraints. If there is no upper limit on the i-th constraint, then bu(i) 
will not be referenced. 

contype — One-dimensional array of length ncon indicating the type of con-
straints exclusive of simple bounds, where contype(i) = 0, 1, 2, 3 indicates =, ≤, 
≥, and range constraints, respectively. 
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Returned Value

result — One-dimensional array of length nca containing the approximate 
solution.

Input Keywords

Double — If present and nonzero, double precision is used.

Xlb — One-dimensional array of length nca containing the lower bound on the 
variables. If there is no lower bound on the i-th variable, then Xlb(i) should be 
set to 1.0e30.

Xub — One-dimensional array of length nca containing the upper bound on the 
variables. If there is no upper bound on the i-th variable, then Xub(i) should be 
set to −1.0e30.

Itmax — Set the maximum number of iterations.

Default: Itmax = 5*max(nra, nca)

contype(i) constraint

0

2

3

4

c i j bl i
j

nca

=

−
∑ =

0

1
,� � � �
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Rel_Tolerance — Relative rank determination tolerance to be used.

Default: Rel_Tolerance = SQRT(machine epsilon).

Abs_Tolerance — Absolute rank determination tolerance to be used.

Default: Abs_Tolerance = SQRT(machine epsilon).

Output Keywords

Residual — Named variable into which an one-dimensional array containing 
the residuals b − Ax of the least-squares equations at the approximate solution is 
stored.

Discussion

The function LINLSQ solves linear least-squares problems with linear con-
straints. These are systems of least-squares equations of the form

Ax ≅ b

subject to

bl ≤ Cx ≤ bu

xl ≤ x ≤ xu

Here A is the coefficient matrix of the least-squares equations, b is the right-
hand side, and C is the coefficient matrix of the constraints. The vectors bl, bu, 
xl and xu are the lower and upper bounds on the constraints and the variables, 
respectively. The system is solved by defining dependent variables y ≡ Cx and 
then solving the least-squares system with the lower and upper bounds on x and 
y. The equation Cx − y = 0 is a set of equality constraints. These constraints are 
realized by heavy weighting, i.e., a penalty method, Hanson (1986, pp. 826-
834).

Example 1

In this example, the following problem is solved in the least-squares sense:

3x1 + 2x2 + x3 = 3.3

4x1 +2x2 + x3 = 2.2

2x1 + 2x2 + x3 = 1.3

x1 + x2 + x3 = 1.0
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Subject to

x1 + x2 + x3 ≤ 1

0 ≤ x1 ≤ 0.5

0 ≤ x2 ≤ 0.5

0 ≤ x3 ≤ 0.5

a  =  TRANSPOSE([[3.0, 2.0, 1.0], [4.0, 2.0, 1.0], $

                 [2.0, 2.0, 1.0], [1.0, 1.0, 1.0]])

b  =  [3.3, 2.3, 1.3, 1.0]

c  =  [[1.0], [1.0], [1.0]]

xub  =  [0.5, 0.5, 0.5]

xlb  =  [0.0, 0.0, 0.0]

contype  =  [1]

bc  =  [1.0]

; Note that only upper bound is set for contype =1.

sol  =  LINLSQ(b, a, c, bc, bc, contype, Xlb = xlb, Xub = xub)

PM, sol, Title = "Solution"

     0.500000

     0.300000

     0.200000

Example 2

The same problem solved in the first example is solved again. This time residu-
als of the least-squares equations at the approximate solution are returned, and 
the norm of the residual vector is printed.

a  =  TRANSPOSE([[3.0, 2.0, 1.0], [4.0, 2.0, 1.0], $

                 [2.0, 2.0, 1.0], [1.0, 1.0, 1.0]])

b  =  [3.3, 2.3, 1.3, 1.0] 

c  =  [[1.0], [1.0], [1.0]]

xub  =  [0.5, 0.5, 0.5]

xlb  =  [0.0, 0.0, 0.0]

contype  =  [1]

bc  =  [1.0]

sol  =  LINLSQ(b, a, c, bc, bc, contype, Xlb = xlb, $

               Xub = xub, Residual = residual)
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PM, sol, Title = "Solution"

Solution

    0.500000

    0.300000

    0.200000

PM, residual, Title = "Residual"

Residual

    -1.00000

    0.500000

    0.500000

     0.00000

PRINT, "Norm of Residual =", NORM(residual)

Norm of Residual =      1.22474

SP_LUSOL Function 
Solves a sparse system of linear equations Ax = b. Using keywords, any of sev-
eral related computations can be performed.

Usage

result = SP_LUSOL(b [, a])

Input Parameters

b — One-dimensional matrix containing the right-hand side.

a — (Optional) Sparse matrix stored as an array of structures containing the 
coefficient matrix A(i,j). See the chapter introduction for a description of struc-
tures used for sparse matrices.

Returned Value

result — A one-dimensional array containing the solution of the linear system 
Ax = b. 

Input Keywords

Transpose — If present and nonzero, ATx = b is solved.
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Pivoting — Scalar value specifying the pivoting method to use.
For Row Markowitz, set Pivoting to 1; for Column Markowitz, set Pivoting to 
2; and for Symmetric Markowitz, set Pivoting to 3.
Default: Pivoting = 3

N_search_rows — The number of rows which have the least number of non-
zero elements that will be searched for a pivot element.
Default: N_search_rows = 3

Iter_refine — If present and nonzero, iterative refinement will be applied.

Tol_drop — Possible fill-in is checked against this tolerance. If the absolute 
value of the new element is less than Tol_drop, it will be discarded.
Default: Tol_drop = 0.0

Stability — The absolute value of the pivot element must be bigger than the 
largest element in absolute value in its row divided by Stability.
Default: Stability = 10.0

Gwth_lim — The computation stops if the growth factor exceeds Gwth_limit.
Default: Gwth_limit = 1.0e16

Memory_block — Supply the number of non-zeros which will be added to the 
factor if current allocations are inadequate.
Default: Memory_block = N_ELEMENTS(a)

Hybrid_density — Enable the function to switch to a dense factorization 
method when the density of the active submatrix reaches 
0.0 ≤ Hybrid_density ≤ 1.0 and the order of the active submatrix is less than or 
equal to Hybrid_order. The keywords Hybrid_density and Hybrid_order must 
be used together.

Hybrid_order — Enable the function to switch to a dense factorization method 
when the density of the active submatrix reaches 0.0 ≤ Hybrid_density ≤ 1.0 
and the order of the active submatrix is less than or equal to Hybrid_order.
The keywords Hybrid_density and Hybrid_order must be used together.

Csc_col — Accept the coefficient matrix in compressed sparse column (CSC) 
format. See the chapter introduction for a discussion of this storage scheme The 
keywords Csc_col, Csc_row, and Csc_val must be used together.

Csc_row — Accept the coefficient matrix in compressed sparse column (CSC) 
format. See the chapter introduction for a discussion of this storage scheme The 
keywords Csc_col, Csc_row, and Csc_val must be used together.
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Csc_val — Accept the coefficient matrix in compressed sparse column (CSC) 
format. See the chapter introduction for a discussion of this storage scheme The 
keywords Csc_col, Csc_row, and Csc_val must be used together.

Factor_coord — The LU factorization of A as computed by SP_LUFAC. If this 
keyword is used, then the paramter a should not be used. This keyword is use-
ful if solutions to systems involving the same coefficient matrix and multiple 
right-hand sides will be solved. Keywords Factor_Coord and Condition cannot 
be used together. 

Output Keywords

Condition — Specifies a named variable into which an estimate of the L1 con-
dition number is stored. Keywords Factor_Coord and Condition cannot be used 
together.

Gwth_factor — Specifies a named variable into which the largest element in 
absolute value at any stage of the Gaussian elimination divided by the largest 
element in absolute value in A is stored.

Smallest_pvt — Specifies a named variable into which the value of the pivot 
element of smallest magnitude that occurred during the factorization is stored.

N_nonzero — Specifies a named variable into which the total number of non-
zeros in the factor is stored.

Discussion

The function SP_LUSOL solves a system of linear equations Ax = b, where A is 
sparse. In its default usage, it solves the so-called one off problem, by first per-
forming an LU factorization of A using the improved generalized symmetric 
Markowitz pivoting scheme. The factor L is not stored explicitly because the 
saxpy operations performed during the elimination are extended to the right-
hand side, along with any row interchanges. Thus, the system Ly = b is solved 
implicitly. The factor U is then passed to a triangular solver which computes the 
solution x from Ux = y.

If a sequence of systems Ax = b are to be solved where A is unchanged, it is 
usually more efficient to compute the factorization once, and perform multiple 
forward and back solves with the various right-hand sides. In this case the fac-
tor L is explicitly stored and a record of all row as well as column interchanges 
is made. The solve step then solves the two triangular systems Ly = b and 
Ux = y. In this case the user should first call SP_LUFAC to compute the factor-
ization, then use the keyword Factor_coord with the function SP_LUSOL.
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If the solution to ATx = b is required, specify the keyword Transpose. This key-
word only alters the forward elimination and back substitution so that the 
operations UTy = b and LTx = y are performed to obtain the solution. So, with 
one call to SP_LUFAC to produce the factorization, solutions to both Ax = b 
and ATx = b can be obtained. 

The keyword Condition is used to calculate and return an estimation of the L1 
condition number of A. The algorithm used is due to Higham. Specification of 
Condition causes a complete L to be computed and stored, even if a one off 
problem is being solved. This is due to the fact that Higham’s method requires a 
solution to problems of the form Az = r and ATz = r.

The default pivoting strategy is symmetric Markowitz (Pivoting = 3). If a row 
or column oriented problem is encountered, there may be some reduction in fill-
in by selecting either Pivoting = 1 for Row Markowitz, or Pivoting = 2 for col-
umn Markowitz. The Markowitz strategy will search a pre-elected number of 
rows or columns for pivot candidates. The default number is three, but this can 
be changed by using the keyword N_search_rows.

The keyword Tol_drop can be used to set a tolerance which can reduce fill-in. 
This works by preventing any new fill element which has magnitude less than 
the specified drop tolerance from being added to the factorization. Since this 
can introduce substantial error into the factorization, it is recommended that the 
keyword Iter_refine be used to recover more accuracy in the final solution. The 
trade-off is between space savings from the drop tolerance and the extra time 
needed in repeated solve steps needed for refinement. 

The function SP_LUSOL provides the option of switching to a dense factoriza-
tion method at some point during the decomposition. This option is enabled by 
specifying the keywords Hybrid_density and Hybrid_order. Hybrid_density 
specifies a minimum density for the active submatrix before a format switch 
will occur. A density of 1.0 indicates complete fill-in. Hybrid_order places an 
upper bound of the order of the active submatrix which will be converted to 
dense format. This is used to prevent a switch from occurring too early, possi-
bly when the O(n3) nature of the dense factorization will cause performance 
degradation. Note that this option can significantly increase heap storage 
requirements.
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Example 1

As an example, consider the following matrix: 

Let xT = (1, 2, 3, 4, 5, 6) so that Ax = (10, 7, 45, 33, –34, 31)T. The number of 
nonzeros in A is 15. 

A = replicate(!F_sp_elem, 15)

; Define the sparse matrix A using coordinate storage format.

a(*).row = [0, 1, 1, 1, 2, $
3, 3, 3, 4, 4, $
4, 4, 5, 5, 5]

a(*).col = [0, 1, 2, 3, 2, $
0, 3, 4, 0, 3, $
4, 5, 0, 1, 5]

a(*).val = [10, 10, -3, -1, 15, $
-2, 10, -1, -1, -5, $
1, -3, -1, -2, 6]

b = [10, 7, 45, 33, -34, 31]

; Define the right-hand side.

x = SP_LUSOL(b, a)

; Call SP_LUSOL, then print out result and the residual.

PM, x

1.0000000
2.0000000
3.0000000
4.0000000
5.0000000
6.0000000

PM, SP_MVMUL(6, 6, a, x) - b

0.0000000
-8.8817842e-16

A

10 0 0 0 0 0

0 10 3– 1– 0 0

0 0 15 0 0 0

2– 0 0 10 1– 0

1– 0 0 5– 1 3–

1– 2– 0 0 0 6

=
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0.0000000
0.0000000
0.0000000
0.0000000

See Also

SP_LUFAC

SP_LUFAC Function
Computes an LU factorization of a sparse matrix stored in either coordinate for-
mat or CSC format. Using keywords, any of several related computations can 
be performed.

Usage

result = SP_LUFAC(a, n_rows)

Input Parameters

a — Sparse matrix stored as an array of structures containing the coefficient 
matrix A(i,j). See the chapter introduction for a description of structures used 
for sparse matrices.

n_rows — The number of rows in a.

Returned Value

result — Structure containing the LU factorization of A.

Input Keywords

Transpose — If present and nonzero, ATx = b is solved.

Pivoting — Scalar value specifying the pivoting method to use.
For Row Markowitz, set Pivoting to 1; for Column Markowitz, set Pivoting to 
2; and for Symmetric Markowitz, set Pivoting to 3.
Default: Pivoting = 3 
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N_search_rows — The number of rows which have the least number of non-
zero elements that will be searched for a pivot element.
Default: N_search_rows = 3 

Iter_refine — If present and nonzero, iterative refinement will be applied.

Tol_drop — Possible fill-in is checked against this tolerance. If the absolute 
value of the new element is less than Tol_drop, it will be discarded.
Default: Tol_drop = 0.0 

Stability — The absolute value of the pivot element must be bigger than the 
largest element in absolute value in its row divided by Stability.
Default: Stability = 10.0 

Gwth_lim — The computation stops if the growth factor exceeds Gwth_limit.
Default: Gwth_limit = 1.0e16 

Memory_block — Supply the number of non-zeros which will be added to the 
factor if current allocations are inadequate.
Default: Memory_block = N_ELEMENTS(a) 

Hybrid_density — Enable the function to switch to a dense factorization 
method when the density of the active submatrix reaches 0.0 ≤ Hybrid_density 
≤ 1.0 and the order of the active submatrix is less than or equal to 
Hybrid_order. The keywords Hybrid_density and Hybrid_order must be used 
together.

Hybrid_order — Enable the function to switch to a dense factorization method 
when the density of the active submatrix reaches 0.0 ≤ Hybrid_density ≤ 1.0 
and the order of the active submatrix is less than or equal to Hybrid_order.
The keywords Hybrid_density and Hybrid_order must be used together.

Csc_col — Accept the coefficient matrix in compressed sparse column (CSC) 
format. See the chapter introduction for a discussion of this storage scheme The 
keywords Csc_col, Csc_row, and Csc_val must be used together.

Csc_row — Accept the coefficient matrix in compressed sparse column (CSC) 
format. See the chapter introduction for a discussion of this storage scheme The 
keywords Csc_col, Csc_row, and Csc_val must be used together.

Csc_val — Accept the coefficient matrix in compressed sparse column (CSC) 
format. See the chapter introduction for a discussion of this storage scheme The 
keywords Csc_col, Csc_row, and Csc_val must be used together.
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Output Keywords

Condition — Specifies a named variable into which an estimate of the L1 con-
dition number is stored. 

Gwth_factor — Specifies a named variable into which the largest element in 
absolute value at any stage of the Gaussian elimination divided by the largest 
element in absolute value in A is stored.

Smallest_pvt — Specifies a named variable into which the value of the pivot 
element of smallest magnitude that occurred during the factorization is stored.

N_nonzeros — Specifies a named variable into which the total number of non-
zeros in the factor is stored. 

Discussion

The function SP_LUFAC computes an LU factorization of A using the 
improved generalized symmetric Markowitz pivoting scheme. 

If a sequence of systems Ax = b are to be solved where A is unchanged, it is 
usually more efficient to compute the factorization once, and perform multiple 
forward and back solves with the various right-hand sides. In this case, the fac-
tor L is explicitly stored and a record of all rows as well as column interchanges 
is made. The solve step then solves the two triangular systems Ly = b and 
Ux = y. In this case, first call SP_LUFAC to compute the factorization, then use 
the keyword Factor_coord with the function SP_LUSOL.

If the solution to ATx = b is required, specify the keyword Transpose. This key-
word only alters the forward elimination and back substitution so that the 
operations UTy = b and LTx = y are performed to obtain the solution. So, with 
one call to SP_LUFAC to produce the factorization, solutions to both Ax = b 
and ATx = b can be obtained. 

The keyword Condition is used to calculate and return an estimation of the L1 

condition number of A. The algorithm used is due to Higham. Specification of 
Condition causes a complete L to be computed and stored, even if a one off 
problem is being solved. This is due to the fact that Higham’s method requires 
solution to problems of the form Az = r and ATz = r.

The default pivoting strategy is symmetric Markowitz (Pivoting = 3). If a row 
or column oriented problem is encountered, there may be some reduction in fill-
in by selecting either Pivoting = 1 for Row Markowitz, or Pivoting = 2 for col-
umn Markowitz. The Markowitz strategy will search a pre-elected number of 
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rows or columns for pivot candidates. The default number is three, but this can 
be changed by using the keyword N_search_rows.

The keyword Tol_drop can be used to set a tolerance which can reduce fill-in. 
This works by preventing any new fill element which has magnitude less than 
the specified drop tolerance from being added to the factorization. Since this 
can introduce substantial error into the factorization, it is recommended that the 
keyword Iter_refine be used to recover more accuracy in the final solution. The 
trade-off is between space savings from the drop tolerance and the extra time 
needed in repeated solve steps needed for refinement. 

The function SP_LUFAC provides the option of switching to a dense factoriza-
tion method at some point during the decomposition. This option is enabled by 
specifying the keywords Hybrid_density and Hybrid_order. Hybrid_density 
specifies a minimum density for the active submatrix before a format switch 
will occur. A density of 1.0 indicates complete fill-in. Hybrid_order places an 
upper bound of the order of the active submatrix which will be converted to 
dense format. This is used to prevent a switch from occurring too early, possi-
bly when the O(n3) nature of the dense factorization will cause performance 
degradation. Note that this option can significantly increase heap storage 
requirements.

Example 1
As an example, consider the following matrix:

Let 

x1
T = (1, 2, 3, 4, 5, 6) so that 

x1 = (10, 7, 45, 33, –34, 31)T, 

and let

x2
T = (5, 10, 15, 15, 10, 5) so that Ax2 = (50, 40, 225, 130, –85, 5)T.

A

10 0 0 0 0 0

0 10 3– 1– 0 0

0 0 15 0 0 0

2– 0 0 10 1– 0

1– 0 0 5– 1 3–

1– 2– 0 0 0 6

=
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In this example we factor A using SP_LUFAC, and compute solutions to the 
systems Ax1 = b1 and Ax2 = b2 using the computed factor as input to 
SP_LUSOL.

A = replicate(!F_sp_elem, 15)

; Define the sparse matrix A using coordinate storage format.

a(*).row = [0, 1, 1, 1, 2, $
3, 3, 3, 4, 4, $
4, 4, 5, 5, 5]

a(*).col = [0, 1, 2, 3, 2, $
0, 3, 4, 0, 3, $
4, 5, 0, 1, 5]

a(*).val = [10, 10, -3, -1, 15, $
-2, 10, -1, -1, -5, $
1, -3, -1, -2, 6]

b1 = [10, 7, 45, 33, -34, 31]

b2 = [50, 40, 225, 130, -85, 5]

; Define the right-hand sides.

factor = SP_LUFAC(a, 6)

; Compute the LU factorization.

x1 = SP_LUSOL(b1, factor_coord = factor)

; Call SP_LUSOL with factor and b1, then print out result and the sum 

; of the resuduals residual.

PM, x1

1.0000000
2.0000000
3.0000000
4.0000000
5.0000000
6.0000000

PM, TOTAL(ABS(SP_MVMUL(6, 6, a, x1) - b1))

8.8817842e-16

x2 = SP_LUSOL(b2, factor_coord = factor)

; Call SP_LUSOL with factor and b2, then print out result and the 

; sum of the resuduals residual.

PM, x2

5.0000000
10.000000
15.000000
15.000000
10.000000
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5.0000000

PM, TOTAL(ABS(SP_MVMUL(6, 6, a, x2) - b2))

1.4210855e-14

See Also

SP_LUSOL

SP_BDSOL Function
Solves a general band system of linear equations Ax = b. Using keywords, any 
of several related computations can be performed. 

Usage

result = SP_BDSOL(b, nlca, nuca [, a])

Input Parameters

b — One-dimensional matrix containing the right-hand side.

nlca — Number of lower codiagonals in a.

nuca — Number of upper codiagonals in a.

a — (Optional) Array of size (nlca + nuca + 1) x n containing the n x n banded 
coefficient matrix in band storage mode A(i, j). See the chapter introduction for 
a description of band storage mode.

Returned Value

result — A one-dimensional array containing the solution of the linear system 
Ax = b. 

Input Keywords

Transpose — If present and nonzero, ATx = b is solved.

Blk_factor — The blocking factor. This keyword must be set no larger than 32.
Default: Blk_factor = 1.
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Pivot — One-dimensional array containing the pivot sequence. The keywords 
Pivot and Factor must be used together. Keywords Pivot and Condition cannot 
be used together. 

Factor — An array of size (2*nlca + nuca + 1) x N_ELEMENTS(b) contain-
ing the LU factorization of A with column pivoting, as returned from 
SP_BDFAC. The keywords Pivot and Factor must be used together. Keywords 
Factor and Condition cannot be used together. 

Double — If present and nonzero, double precision is used. 

Output Keywords

Condition — Specifies a named variable into which an estimate of the L1 con-
dition number is stored. This keyword cannot be used with Pivot and Factor. 

Discussion

The function SP_BDSOL solves a system of linear algebraic equations with a 
real or complex band matrix A. It first computes the LU factorization of A with 
based on the blocked LU factorization algorithm given in Du Croz, et al, 
(1990). Level-3 BLAS invocations were replaced by in-line loops. The block-
ing factor Blk_factor has the default value of 1, but can be reset to any positive 
value not exceeding 32.

The solution of the linear system is then found by solving two simpler systems, 
y = L–1b and x = U–1y. When the solution to the linear system or the inverse of 
the matrix is sought, an estimate of the L1 condition number of A is computed 
using Higham’s modifications to Hager’s method, as given in Higham (1988). If 
the estimated condition number is greater than 1/ε (where ε is the machine pre-
cision), a warning message is issued. This indicates that very small changes in 
A may produce large changes in the solution x. The function SP_BDSOL fails if 
U, the upper triangular part of the factorization, has a zero diagonal element.

Example 1

Consider the 1000 x 1000 banded matrix below:
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In this example we compute the solution to Ax = b, where b is a random vector.

n_rows = 1000L

nlca = 1L

nuca = 1L

a = DBLARR(n_rows*(nlca+nuca+1))

a(1:n_rows-1) = 4

a(n_rows:2*n_rows-1) = -1

a(2*n_rows:*) = 4

; Fill A with the values of the bands.

seed = 123L

b = RANDOMU(seed, n_rows)

; Compute a random right-hand side.

x = SP_BDSOL(b, nlca, nuca, a)

; Compute the solution using SP_BDSOL above, and output the residual below.

PM, TOTAL(ABS(SP_MVMUL(n_rows, n_rows, $
nlca, nuca, a, x)-b))

1.2367884e-13

See Also

SP_BDFAC

A

1– 4

4 1– 4

4 1– .

. . .

. –1 4

4 1– 4

4 1–

=
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SP_BDFAC Procedure
Computes the LU factorization of a matrix stored in band storage mode.

Usage

SP_BDFAC, nlca, nuca, n_rows, a, pivot, factor

Input Parameters

nlca — Number of lower codiagonals in a.

nuca — Number of upper codiagonals in a.

n_rows — Number of rows in a.

a — Array of size (nlca + nuca + 1) x n containing the n x n banded coeffi-
cient matrix in band storage mode A(i,j). See the chapter introduction for a 
description of band storage mode. 

Output Parameters

pivot — One dimensional array containing the pivot sequence. Keyword Pivot 
and Condition cannot be used together. 

factor — An array of size (2*nlca + nuca + 1) x n_rows containing the LU fac-
torization of A with column pivoting. Keywords Factor and Condition cannot 
be used together. 

Input Keywords

Blk_factor — The blocking factor. This keyword must be set no larger than 32.
Default: Blk_factor = 1.

Double — If present and nonzero, double precision is used. 

Output Keywords

Condition — Specifies a named variable into which an estimate of the L1 con-
dition number is stored. Keyword Condition cannot be used with parameters 
pivot or factor. 
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Discussion

The function SP_BDFAC computes the LU factorization of A with based on the 
blocked LU factorization algorithm given in Du Croz, et al, (1990). Level-3 
BLAS invocations were replaced by in-line loops. The blocking factor 
Blk_factor has the default value of 1, but can be reset to any positive value not 
exceeding 32.

An estimate of the L1 condition number of A is computed using Higham’s modi-
fications to Hager’s method, as given in Higham (1988). If the estimated 
condition number is greater than 1/ε (where ε is the machine precision), a warn-
ing message is issued. This indicates that very small changes in A may produce 
large changes in the solution x.

Example 1

Consider the 1000 x 1000 banded matrix below:

In this example we compute the solution to Ax1 = b1 and Ax2 = b2, where b1 
and b2 are random vectors. The factorization is computed just once, using 
SP_BDFAC, and the solutions are computed using SP_BDSOL.

n_rows = 1000L

nlca = 1L

nuca = 1L

a = DBLARR(n_rows*(nlca+nuca+1))

a(1:n_rows-1) = 4

a(n_rows:2*n_rows-1) = -1

a(2*n_rows:*) = 4

A

1– 4

4 1– 4

4 1– .

. . .

. –1 4

4 1– 4

4 1–

=
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; Fill A with the values of the bands.

seed = 123L

b1 = RANDOMU(seed, n_rows)

b2 = RANDOMU(seed, n_rows)

; Fill random vectors

SP_BDFAC, nlca, nuca, n_rows, a, pivot, factor

; Compute the factorization using SP_BDFAC.

x1 = SP_BDSOL(b1, nlca, nuca, $
Factor = factor, Pivot = pivot)

; Compute the solution of Ax1 = b1 above, and output the residual below.

PM, TOTAL(ABS(SP_MVMUL(n_rows, n_rows, nlca, $
nuca, a, x1)-b1))

1.2367884e-13

x2 = SP_BDSOL(b2, nlca, nuca, $
Factor = factor, Pivot = pivot)

; Compute the solution of Ax2 = b2 above, and output the residual below.

PM, TOTAL(ABS(SP_MVMUL(n_rows, n_rows, nlca, $
nuca, a, x2)-b2))

9.1537888e-14

See Also

SP_BDSOL 
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SP_PDSOL Function
Solves a sparse symmetric positive definite system of linear equations Ax = b. 

Usage

result = SP_PDSOL(b, [, a])

Input Parameters

b — One-dimensional matrix containing the right-hand side.

a — (Optional) Sparse matrix stored as an array of structures containing non-
zeros in lower triangle of the coefficient matrix A(i,j). See the chapter introduc-
tion for a description of structures used for sparse matrices.

Returned Value

result — A one-dimensional array containing the solution of the linear system 
Ax = b. 

Input Keywords

Multifrontal — If present and nonzero, perform the numeric factorization using 
a multifrontal technique. By default a standard factorization is computed based 
on a sparse compressed storage scheme. Keywords MultiFrontal and Factor 
cannot be used together. 

Factor — The factorization of A as computed by SP_PDFAC. If this keyword 
is used, then the argument a should not be used. This keyword is useful if solu-
tions to systems involving the same coefficient matrix and multiple right-hand 
sides will be solved.

Csc_col — Accept the coefficient matrix in compressed sparse column (CSC) 
format. See the chapter introduction for a discussion of this storage scheme. The 
keywords Csc_col, Csc_row, and Csc_val must be used together.

Csc_row — Accept the coefficient matrix in compressed sparse column (CSC) 
format. See the chapter introduction for a discussion of this storage scheme. The 
keywords Csc_col, Csc_row, and Csc_val must be used together.
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Csc_val — Accept the coefficient matrix in compressed sparse column (CSC) 
format. See the chapter introduction for a discussion of this storage scheme. The 
keywords Csc_col, Csc_row, and Csc_val must be used together.

Output Keywords

Sm_diag — The smallest diagonal element that occurred during the numeric 
factorization. This keyword is not valid if the keyword Factor is used.

Lg_diag — The largest diagonal element that occurred during the numeric fac-
torization. This keyword is not valid if the keyword Factor is used.

N_nonzero — Specifies a named variable into which the total number of non-
zeros in the factor is stored. This keyword is not valid if the keyword Factor is 
used.

Discussion

The function SP_PDSOL solves a system of linear algebraic equations having a 
sparse symmetric positive definite coefficient matrix A. In this function’s default 
usage, a symbolic factorization of a permutation of the coefficient matrix is 
computed first. Then a numerical factorization is performed. The solution of the 
linear system is then found using the numeric factor.

The symbolic factorization step of the computation consists of determining a 
minimum degree ordering and then setting up a sparse data structure for the 
Cholesky factor, L. This step only requires the “pattern” of the sparse coeffi-
cient matrix, that is, the locations of the non-zero elements but not any of the 
elements themselves. 

The numerical factorization can be carried out in one of two ways. By default, 
the standard factorization is performed based on a sparse compressed storage 
scheme. This is fully described in George and Liu (1981). Optionally, a multi-
frontal technique can be used. The multifrontal method requires more storage 
but will be faster in certain cases. The multifrontal factorization is based on the 
routines in Liu (1987). For a detailed description of this method, see Liu (1990), 
also Duff and Reid (1983, 1984), Ashcraft (1987), Ashcraft et al. (1987), and 
Liu (1986, 1989).

If an application requires that several linear systems be solved where the coeffi-
cient matrix is the same but the right-hand sides change, the function 
SP_PDFAC can be used to precompute the Cholesky factor. Then the keyword 
Factor can be used in SP_PDSOL to efficiently solve all subsequent systems.
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Given the numeric factorization, the solution x is obtained by the following 
calculations:

Ly1 = Pb 

LTy2 = y1

x = PTy2

The permutation information, P, is carried in the numeric factor structure.

Example 1

As an example consider the 5 x 5 coefficient matrix: 

Let xT = (5, 4, 3, 2, 1) so that Ax = (55, 83, 103, 97, 82)T. The number of non-
zeros in the lower triangle of A is nz = 10. The sparse coordinate form for the 
lower triangle is given by:

Since this representation is not unique, an equivalent form would be:

A = REPLICATE(!F_sp_elem, 10) 

a(*).row = [0, 1, 2, 2, 3, 3, 4, 4, 4, 4]

a(*).col = [0, 1, 0, 2, 2, 3, 0, 1, 3, 4]

row 0 1 2 2 3 3 4 4 4 4

col 0 1 0 2 2 3 0 1 3 4

val 10 20 1 30 4 40 2 3 5 50

row 3 4 4 4 0 1 2 2 3 4

col 3 0 1 3 0 1 0 2 2 4

val 40 2 3 5 10 20 1 30 4 50

10 0 1 0 2

0 20 0 0 3

1 0 30 4 0

0 0 4 40 5

2 3 0 5 50

=
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a(*).val = [10, 20, 1, 30, 4, 40, 2, 3, 5, 50] 

b = [55.0d0, 83, 103, 97, 82] 

x = SP_PDSOL(b, a)

PM, x
5.0000000
4.0000000
3.0000000
2.0000000
1.0000000

See Also

SP_PDFAC

SP_PDFAC Function
Computes a factorization of a sparse symmetric positive definite system of lin-
ear equations Ax = b. 

Usage

result = SP_PDFAC(a, n_rows)

Input Parameters

a — Sparse matrix stored as an array of structures containing non-zeros in 
lower triangle of the coefficient matrix A(i,j). See the chapter introduction for a 
description of structures used for sparse matrices.

n_rows — The number of rows in a.

Returned Value

result — The factorization of Ax = b. 

Input Keywords

Multifrontal — If present and nonzero, perform the numeric factorization using 
a multifrontal technique. By default a standard factorization is computed based 
on a sparse compressed storage scheme 
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Csc_col — Accept the coefficient matrix in compressed sparse column (CSC) 
format. See the chapter introduction for a discussion of this storage scheme. The 
keywords Csc_col, Csc_row, and Csc_val must be used together.

Csc_row — Accept the coefficient matrix in compressed sparse column (CSC) 
format. See the chapter introduction for a discussion of this storage scheme. The 
keywords Csc_col, Csc_row, and Csc_val must be used together.

Csc_val — Accept the coefficient matrix in compressed sparse column (CSC) 
format. See the chapter introduction for a discussion of this storage scheme. The 
keywords Csc_col, Csc_row, and Csc_val must be used together.

Output Keywords

Sm_diag — The smallest diagonal element that occurred during the numeric 
factorization. 

Lg_diag — The largest diagonal element that occurred during the numeric 
factorization. 

N_nonzero — Specifies a named variable into which the total number of non-
zeros in the factor is stored.

Discussion

The function SP_PDFAC computes a factorization of a sparse symmetric posi-
tive definite coefficient matrix A. In this function’s default usage, a symbolic 
factorization of a permutation of the coefficient matrix is computed first. Then a 
numerical factorization is performed. 

The symbolic factorization step of the computation consists of determining a 
minimum degree ordering and then setting up a sparse data structure for the 
Cholesky factor, L. This step only requires the “pattern” of the sparse coeffi-
cient matrix, that is, the locations of the non-zero elements but not any of the 
elements themselves. 

The numerical factorization can be carried out in one of two ways. By default, 
the standard factorization is performed based on a sparse compressed storage 
scheme. This is fully described in George and Liu (1981). Optionally, a multi-
frontal technique can be used. The multifrontal method requires more storage 
but will be faster in certain cases. The multifrontal factorization is based on the 
routines in Liu (1987). For a detailed description of this method, see Liu (1990), 
also Duff and Reid (1983, 1984), Ashcraft (1987), Ashcraft, et al. (1987), and 
Liu (1986, 1989).
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If an application requires that several linear systems be solved where the coeffi-
cient matrix is the same but the right-hand sides change, the function 
SP_PDFAC can be used to precompute the Cholesky factor. Then the keyword 
Factor can be used in SP_PDSOL to efficiently solve all subsequent systems.

Given the numeric factorization, the solution x is obtained by the following 
calculations:

Ly1 = Pb 

LTy2 = y1

x = PTy2

The permutation information, P, is carried in the numeric factor structure.

Example 1

As an example consider the 5 x 5 coefficient matrix:

Let x1
T = (5, 4, 3, 2, 1) so that Ax1 = (55, 83, 103, 97, 82)T. Let x2

T = (1, 2, 3, 4, 
5) so that Ax2 = (23, 55, 107, 197, 278)T. The number of non-zeros in the lower 
triangle of A is nz = 10. The sparse coordinate form for the lower triangle is 
given by: 

Since this representation is not unique, an equivalent form would be:

row 0 1 2 2 3 3 4 4 4 4

col 0 1 0 2 2 3 0 1 3 4

val 10 20 1 30 4 40 2 3 5 50

row 3 4 4 4 0 1 2 2 3 4

col 3 0 1 3 0 1 0 2 2 4

val 40 2 3 5 10 20 1 30 4 50

10 0 1 0 2

0 20 0 0 3

1 0 30 4 0

0 0 4 40 5

2 3 0 5 50

=
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A = REPLICATE(!F_sp_elem, 10) 

a(*).row = [0, 1, 2, 2, 3, 3, 4, 4, 4, 4]

a(*).col = [0, 1, 0, 2, 2, 3, 0, 1, 3, 4]

a(*).val = [10, 20, 1, 30, 4, 40, 2, 3, 5, 50] 

b1 = [55, 83, 103, 97, 82] 

b2 = [23, 55, 107, 197, 278]

factor = SP_PDFAC(a, 5)

x1 = SP_PDSOL(b1, FACTOR = factor)

PM, x1
5.0000000
4.0000000
3.0000000
2.0000000
1.0000000

x2 = SP_PDSOL(b2, FACTOR = factor)

PM, x2
1.0000000
2.0000000
3.0000000
4.0000000
5.0000000

See Also

SP_PDSOL
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SP_BDPDSOL Function
Solves a symmetric positive definite system of linear equations Ax = b in band 
symmetric storage mode. Using keywords, any of several related computations 
can be performed. 

Usage

result = SP_BDPDSOL(b, ncoda, [, a])

Input Parameters

b — One-dimensional matrix containing the right-hand side.

ncoda — Number of upper codiagonals in a.

a — (Optional) Array of size (ncoda + 1) x n containing the n x n banded coef-
ficient matrix in band symmetric storage mode A(i, j). See the chapter 
introduction for a description of band symmetric storage mode.

Returned Value

result — A one-dimensional array containing the solution of the linear system 
Ax = b. 

Input Keywords

Factor — An array of size (ncoda + 1) x N_ELEMENTS(b) containing the RTR 
factorization of A in band symmetric storage mode, as returned from 
SP_BDPDFAC.

Double — If present and nonzero, double precision is used. 

Output Keywords

Condition — Specifies a named variable into which an estimate of the L1 con-
dition number is stored. This keyword cannot be used if a previously computed 
factorization is specified with Factor.
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Discussion

The function SP_BDPDSOL solves a system of linear algebraic equations with 
a symmetric positive definite band coefficient matrix A. It computes the RTR 
Cholesky factorization of A. R is an upper triangular band matrix.

The L1 condition number of A is computed using Higham’s modifications to 
Hager’s method, as given in Higham (1988). If the estimated condition number 
is greater than 1/ε (where ε is the machine precision), a warning message is 
issued. This indicates that very small changes in A may produce large changes 
in the solution x.

The function SP_BDPDSOL fails if any submatrix of R is not positive definite 
or if R has a zero diagonal element. These errors occur only if A is very close to 
a singular matrix or to a matrix which is not positive definite.

The function SP_BDPDSOL is partially based on the LINPACK subroutines 
CPBFA and SPBSL; see Dongarra et al. (1979).

Example 1

Solve a system of linear equations Ax = b, where

, 

n = 4L

ncoda = 2L

a = DBLARR((ncoda+1)*n)

a(0:n-1) = [0, 0, -1, 1]

a(n:2L*n-1) = [0, 0, 2, -1]

a(2L*n:*) = [2, 4, 7, 3]

; Define A in band symmetric storage mode.

b = [6, -11, -11, 19]

x = SP_BDPDSOL(b, ncoda, a)

; Compute the solution

PM, x
4.0000000
-6.0000000

A

2 0 1– 0

0 4 2 1

1– 2 7 1–

0 1 1– 3

= b

6

11–

11–

19

=
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2.0000000
9.0000000

SP_BDPDFAC Function
Computes the RTR Cholesky factorization of symmetric positive definite matrix, 
A, in band symmetric storage mode.

Usage

result = SP_BDPDFAC(a, n, ncoda) 

Input Parameters

a — Array of size (ncoda + 1) x n containing the n x n banded coefficient 
matrix in band symmetric storage mode A(i,j). See the chapter introduction for a 
description of band symmetric storage mode.

n — Number rows in a.

ncoda — Number of upper codiagonals in a.

Returned Value

result — An array of size (ncoda + 1) x n containing the RTR factorization of A 
in band symmetric storage mode.

Input Keywords

Double — If present and nonzero, double precision is used. 

Output Keywords

Condition — Specifies a named variable into which an estimate of the L1 con-
dition number is stored. 

Discussion

The function SP_BDPDFAC computes the RTR Cholesky factorization of A. R 
is an upper triangular band matrix.
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The L1 condition number of A is computed using Higham’s modifications to 
Hager’s method, as given in Higham (1988). If the estimated condition number 
is greater than 1/ε (where ε is the machine precision), a warning message is 
issued. This indicates that very small changes in A may produce large changes 
in the solution x.

The function SP_BDPDFAC fails if any submatrix of R is not positive definite 
or if R has a zero diagonal element. These errors occur only if A is very close to 
a singular matrix or to a matrix which is not positive definite.

The function SP_BDPDFAC is partially based on the LINPACK subroutines 
CPBFA and SPBSL; see Dongarra et al. (1979).

Example 1

Solve a system of linear equations Ax = b, using both SP_BDPDFAC and 
SP_BDPDSOL, where

, 

n = 4L

ncoda = 2L

a = DBLARR((ncoda+1)*n)

a(0:n-1) = [0, 0, -1, 1]

a(n:2L*n-1) = [0, 0, 2, -1]

a(2L*n:*) = [2, 4, 7, 3]

; Define A in band symmetric storage mode.

b = [6, -11, -11, 19]

factor = SP_BDPDFAC(a, n, ncoda)

; Use SP_BDPDFAC to compute the factorization.

x = SP_BDPDSOL(b, ncoda, Factor=factor)

; Compute the solution

PM, x
4.0000000
-6.0000000
2.0000000
9.0000000

A

2 0 1– 0

0 4 2 1

1– 2 7 1–

0 1 1– 3

= b

6

11–

11–

19

=
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SP_GMRES Function
Solves a linear system Ax = b using the restarted generalized minimum residual 
(GMRES) method.

Usage

result = SP_GMRES(amultp, b)

Input Parameters

amultp — Scalar string specifying a user supplied function that computes 
z = Ap. The function accepts the argument p, and returns the vector Ap.

b — One-dimensional matrix containing the right-hand side.

Returned Value

result — A one-dimensional array containing the solution of the linear system 
Ax = b. 

Input Keywords

Tolerance — The algorithm attempts to generate x such that

, 

where τ = Tolerance.
Default: Tolerance = SQRT(machine precision).

Precond — Scalar sting specifying a user supplied function which sets z = M–

1r, where M is the preconditioning matrix.

Max_krylov — The maximum Krylov subspace dimension, that is, the maxi-
mum allowable number of GMRES iterations allowed before restarting.
Default: Max_krylov= Minimum(N_ELEMENTS(b), 20).

Hh_reorth — If present and nonzero, perform orthogonalization by House-
holder transformations, replacing the Gram-Schmidt process.

Double — If present and nonzero, double precision is used. 

b Ax– 2 τ b 2≤
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Input/Output Keywords

Itmax — Initially set to the maximum number of GMRES iterations allowed. 
On exit, the number of iterations used is returned.
Default: Itmax= 1000

Discussion

The function SP_GMRES, based on the FORTRAN subroutine GMRESD by H. 
F. Walker, solves the linear system Ax = b using the GMRES method. This 
method is described in detail by Saad and Schultz (1986) and Walker (1988).

The GMRES method begins with an approximate solution x0 and an initial 
residual r0 = b – Ax0. At iteration m, a correction zm is determined in the Krylov 
subspace 

κm(v) = span(v, Av, ..., Am–1v) 

v = r0 which solves the least squares problem 

Then at iteration m, xm = x0 + zm.

Orthogonalization by Householder transformations requires less storage but 
more arithmetic than Gram-Schmidt. However, Walker (1988) reports numeri-
cal experiments which suggest the Householder approach is more stable, 
especially as the limits of residual reduction are reached.

Example 1

In this example, the solution to a linear system is found. The coefficient matrix 
is stored in coordinate format. Consider the following matrix:

min
z κm r0( )∈( )

b A x0 z+( )– 2

A

10 0 0 0 0 0

0 10 3– 1– 0 0

0 0 15 0 0 0

2– 0 0 10 1– 0

1– 0 0 5– 1 3–

1– 2– 0 0 0 6

=
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Let xT = (1, 2, 3, 4, 5, 6) so that Ax = (10, 7, 45, 33, –34, 31)T. The number of 
nonzeros in A is 15. 

FUNCTION Amultp, p

; This function uses SP_MVMUL to multiply a sparse matrix stored 

; in coordinate storage mode and a vector. The common block is used 

; to hold the sparse matrix.

   COMMON Gmres_ex1, nrows, ncols, a

   RETURN, SP_MVMUL(nrows, ncols, a, p)

END

PRO Gmres1

; This procedure defines the sparse matrix, A, stored in coordinate 

; storage mode, and then calls SP_GMRES to compute the solution 

; to Ax = b.

   COMMON Gmres_ex1, nrows, ncols, a

   A = replicate(!F_sp_elem, 15)

   a(*).row = [0, 1, 1, 1, 2, $
3, 3, 3, 4, 4, $

4, 4, 5, 5, 5]

   a(*).col = [0, 1, 2, 3, 2, $
0, 3, 4, 0, 3, $
4, 5, 0, 1, 5]

   a(*).val = [10, 10, -3, -1, 15, $
-2, 10, -1, -1, -5, $
1, -3, -1, -2, 6]

   nrows = 6

   ncols = 6

   b = [10, 7, 45, 33, -34, 31]

   itmax = 10

; Itmax is input/output. 

   x = sp_gmres(’amultp’, b, Itmax = itmax)

   pm, x, title = ’Solution to Ax = b’

   pm, itmax, title = ’Number of iterations’

END

; Output of this procedure:

Solution to Ax = b
1.0000000
2.0000000
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3.0000000
4.0000000
5.0000000
6.0000000

Number of iterations
6

SP_CG Function
Solves a real symmetric definite linear system using a conjugate gradient 
method. Using keywords, a preconditioner can be supplied.

Usage

result = SP_CG(amultp, b)

Input Parameters

amultp — Scalar string specifying a user supplied function which computes 
z = Ap. The function accepts the argument p, and returns the vector Ap.

b — One-dimensional matrix containing the right-hand side.

Returned Value

result — A one-dimensional array containing the solution of the linear system 
Ax = b. 

Input Keywords

Precond — Scalar string specifying a user supplied function which sets 
z = M –1r, where M is the preconditioning matrix.

Jacobi — If present, use the Jacobi preconditioner, that is, M = diag(A). The 
user-supplied vector Jacobi should be set so that jacobi(i) = Ai,i. 

Double — If present and nonzero, double precision is used. 
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Input/Output Keywords

Itmax — Initially set to the maximum number of GMRES iterations allowed. 
On exit, the number of iterations used is returned.
Default: Itmax = 1000

Rel_err — Initially set to relative error desired. On exit, the computed relative 
error is returned. Default: Rel_err = SQRT(machine precision)

Discussion

The function SP_CG solves the symmetric definite linear system Ax = b using 
the conjugate gradient method with optional preconditioning. This method is 
described in detail by Golub and Van Loan (1983, chapter 10), and in Hageman 
and Young (1981, chapter 7). 

The preconditioning matrix M, is a matrix that approximates A, and for which 
the linear system Mz = r is easy to solve. These two properties are in conflict; 
balancing them is a topic of much current research. In the default usage of 
SP_CG, M = I. If the keyword Jacobi is selected, M is set to the diagonal of A. 

The number of iterations needed depends on the matrix and the error tolerance. 
As a rough guide, 

 for . 

See the academic references for details.

Let M be the preconditioning matrix, let b, p, r, x, and z be vectors and let τ be 
the desired relative error. Then the algorithm used is as follows: 

Itmax n= n 1»

λ 1–=
p0 x0=
r1 b Ap–=
fork 1 … itmax, ,=

zk M 1– rk=
ifk 1then=

βk 1=
pk zk=

else
βk zk

Trk( ) zk 1–
T rk 1–( )⁄=

pk zk βkpk+=
endif
zk Ap=
αk zk 1–

T zk 1–( ) zk
Tpk( )⁄=
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Here λ is an estimate of λmax(G), the largest eigenvalue of the iteration matrix 
G = I – M–1A. The stopping criterion is based on the result (Hageman and 
Young, 1981, pages 148-151): 

, 

where . It is also known that

,

where the  are the symmetric, tridiagonal matrices

with µk = 1 – βk / αk–1, µ1 = 1 – 1 / α1, and ωk = SQRT(βk)/αk–1. Usually the 
eigenvalue computation is needed for only a few of the iterations.

Example 1

In this example, the solution to a linear system is found. The coefficient matrix 
is stored as a full matrix. 

FUNCTION Amultp, p

; Since A is in dense form, we use the # operator to perform the 

; matrix-vector product. The common block us used to hold A.

   COMMON Cg_comm1, a

   RETURN, a#p

END

Pro CG_EX1

xk xk αkpk+=
rk rk αkzk–=

if zk 2 τ 1 λ–( ) xk 2≤( )then
recomputeλ

if zk 2 τ 1 λ–( ) xk 2≤( )exit
endif

endfor

xk x– M

x M
---------------------

1
1 λmax G( )–
---------------------------- 

  zk M

xk M

------------ 
 ≤

x M
2 xTMx=

λmax T1( ) λmax T2( ) … λmax G( ) 1<≤ ≤≤

Tn

Tn

µ1 ω2

ω2 µ2 ω3

ω3 µ3 ω4

=
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   COMMON Cg_comm1, a

   a = TRANSPOSE([[ 1, -3, 2], $

                   [-3, 10, -5], $ 

                   [ 2, -5, 6]])

   b = [27, -78, 64]

   x = SP_CG(’amultp’, b)

; Use SP_CG to compute the solution, then output the result.

   PM, x, title = ’Solution to Ax = b’

END

; Output of this procedure:

Solution to Ax = b
1.0000000
-4.0000000
 7.0000000

SP_MVMUL Function
Computes a matrix-vector product involving sparse matrix and a dense vector.

Usage

Matrix stored in coordinate format:
result = SP_MVMUL(n_rows, n_cols, a, x)

Matrix stored in Band format:
result = SP_MVMUL(n_rows, n_cols, nlca, nuca, a, x)

Input Parameters

nrows — Number of rows in the matrix a.

ncols — Number of columns in the matrix a. 

nlca — Number of lower codiagonals in a. nuca should be used if a is stored in 
band format.

nuca — Number of upper codiagonals in a. nlca should be used if a is stored in 
band format.

a — If in coordinate format, a sparse matrix stored as an array of structures. If 
banded, an array of size (nlca + nuca + 1) x nrows containing the nrows x ncols 



SP_MVMUL Function  83

banded coefficient matrix in band storage mode. If the banded, and the keyword 
Symmetric is set, an array of size (nlca + 1) x nrows containing the nrows x 
ncols banded coefficient matrix in band symmetric storage mode A(i,j). See the 
chapter introduction for a description of band storage mode.

x — One-dimensional matrix containing the vector to be multiplied by a.

Returned Value

result — A one-dimensional array containing the product Ax = b. 

Input Keywords

Symmetric — If present and nonzero, then a is stored in symmetric mode. If A 
is in coordinate format, then Ax + ATx – diag(A) is returned. If A is banded, 
then it must be in band symmetric storage mode. See the chapter introduction 
for a description of band storage modes.

Discussion

The function SP_MVMUL computes a matrix-vector product involving a sparse 
matrix and a dense vector.

If A is stored in coordinate format, then the arguments  nrows, ncols, a, and x 
should be used. If the keyword Symmetric is set, then Ax + ATx – diag(A) is 
returned.

If A is a banded, then the arguments nrows, ncols, nlca, nuca, a, and x should 
be used. If the keyword Symmetric is set, then A must be in band symmetric 
storage mode, and the number of codiagonals should be used for both nlca and 
nuca.
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Example 1

In this example, Ax is computed where A is stored in coordinate format.

Let
xT = (1, 2, 3, 4, 5, 6)

A = replicate(!F_sp_elem, 15)

; Define the sparse matrix A using coordinate storage format.

a(*).row = [0, 1, 1, 1, 2, $
3, 3, 3, 4, 4, $
4, 4, 5, 5, 5]

a(*).col = [0, 1, 2, 3, 2, $
0, 3, 4, 0, 3, $
4, 5, 0, 1, 5]

a(*).val = [10, 10, -3, -1, 15, $
-2, 10, -1, -1, -5, $
1, -3, -1, -2, 6]

x= [1, 2, 3, 4, 5, 6]]

ax = SP_MVMUL(6, 6, a, x)

PM, ax
10.000000
7.0000000
45.000000
33.000000

-34.000000
31.000000

Example 2

In this example, Ax is computed where A is stored in band mode. Consider the 
1000 x 1000 banded matrix below:

A

10 0 0 0 0 0

0 10 3– 1– 0 0

0 0 15 0 0 0

2– 0 0 10 1– 0

1– 0 0 5– 1 3–

1– 2– 0 0 0 6

=
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Let x(*) = 2.

n_rows = 1000L

nlca = 1L

nuca = 1L

a = DBLARR(n_rows*(nlca+nuca+1))

a(1:n_rows-1) = 4

a(n_rows:2*n_rows-1) = -1

a(2*n_rows:*) = 4

; Fill A with the values of the bands.

x = DBLARR(n_rows)

x(*) = 2

; Fill up x.

expected = DBLARR(n_rows)

expected(*) = 14

expected(0) = 6

expected(n_rows-1) = 6

; Define the expected result.

ax = SP_MVMUL(n_rows, n_rows, nlca, $

nuca, a, x)

; Compute the product, then output the difference between the 

; computed result and the expected result.

PRINT, TOTAL(ABS(ax-expected))
0.0000000

A

1– 4

4 1– 4

4 1– .

. . .

. –1 4

4 1– 4

4 1–

=
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Example 3

In this example, Ax is computed where A is stored in band symmetric mode. Let 

, 

n = 4L

ncoda = 2L

a = DBLARR((ncoda+1)*n)

a(0:n-1) = [0, 0, -1, 1]

a(n:2L*n-1) = [0, 0, 2, -1]

a(2L*n:*) = [2, 4, 7, 3]

; Fill up contents of A.

x = [4, -6, 2, 9]

ax = SP_MVMUL(n, n, ncoda, ncoda, a, x, $
/Symmetric)

; Call SP_MVMUL with the keyword Symmetric set.

PM, ax
6.0000000

-11.000000
-11.000000
19.000000

A

2 0 1– 0

0 4 2 1

1– 2 7 1–

0 1 1– 3

= x

4

6–

2

9

=
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CHAPTER

2

Eigensystem Analysis 

Contents of Chapter

Linear Eigensystem Problems

General and symmetric matrices ...............  EIG Function

Generalized Eigensystem Problems

Real symmetric matrices 
and B positive definite ................. EIGSYMGEN Function

General eigenexpansion
of Ax=λBx .........................................GENEIG Procedure

Introduction
An ordinary linear eigensystem problem is represented by the equation 
Ax = λx, where A denotes an n x n matrix. The value λ is an eigenvalue, and 
x ≠ 0 is the corresponding eigenvector. The eigenvector is determined up to a 
scalar factor. In all functions, this factor has been chosen so that x has Euclid-
ean length 1, and the component of x of largest magnitude is positive. If x is a 
complex vector, this component of largest magnitude is scaled to be real and 
positive. The entry where this component occurs can be arbitrary for eigenvec-
tors having nonunique maximum magnitude values. 
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A generalized linear eigensystem problem is represented by Ax = λBx, where A 
and B are n x n matrices. The value λ is a generalized eigenvalue, and x is the 
corresponding generalized eigenvector. The generalized eigenvectors are nor-
malized in the same manner as for ordinary eigensystem problems.

Error Analysis and Accuracy 

This section discusses ordinary eigenvalue problems. Except in special cases, 
functions do not return the exact eigenvalue-eigenvector pair for the ordinary 
eigenvalue problem Ax = λx. Typically, the computed pair

 

is an exact eigenvector-eigenvalue pair for a “nearby” matrix A + E . Informa-
tion about E is known only in terms of bounds of the form

|| E ||2 ≤ f(n) || A ||2 ε .

The value of f (n) depends on the algorithm but is typically a small fractional 
power of n. The parameter ε  is the machine precision. By a theorem due to 
Bauer and Fike (see Golub and Van Loan 1989, p. 342), 

   for all λ in 

where σ (A)  is the set of all eigenvalues of A (called the spectrum of A), X is 
the matrix of eigenvectors,

|| · ||2

is Euclidean length, and κ (X)  is the condition number of X defined as

κ (X) = || X ||2 || X–1 ||2 .

If A is a real symmetric or complex Hermitian matrix, then its eigenvector 
matrix X is respectively orthogonal or unitary. For these matrices, κ (X) = 1.

The accuracy of the computed eigenvalues

 and eigenvectors  

can be checked by computing their performance index τ. The performance 
index is defined to be 

x λ,
~~

min λ̂ λ– κ X( ) E 2≤ σ A( )

λ̃j x̃j



Introduction  89

where ε is again the machine precision.

The performance index τ is related to the error analysis because

 

where E is the “nearby” matrix discussed above.

While the exact value of τ is precision and data dependent, the performance of 
an eigensystem analysis function is defined as excellent if τ < 1, good if 1 ≤ τ 
≤100, and poor if τ > 100. This is an arbitrary definition, but large values of τ 
can serve as a warning that there is a significant error in the calculation.

If the condition number κ (X) of the eigenvector matrix X is large, there can be 
large errors in the eigenvalues even if τ is small. In particular, it is often diffi-
cult to recognize near multiple eigenvalues or unstable mathematical problems 
from numerical results. This facet of the eigenvalue problem is often difficult 
for users to understand. Suppose the accuracy of an individual eigenvalue is 
desired. This can be answered approximately by computing the condition num-
ber of an individual eigenvalue (see Golub and Van Loan 1989, pp. 344–345). 
For matrices A such that the computed array of normalized eigenvectors X is 
invertible, the condition number of λj is

, 

the Euclidean length of the j-th row of X –1. Users can choose to compute this 
matrix using function EIG on page 92. An approximate bound for the accuracy 
of a computed eigenvalue is then given by

κ ∈ || A || .

To compute an approximate bound for the relative accuracy of an eigenvalue, 
divide this bound by | λj |.

Reformulating Generalized Eigenvalue Problems 

The generalized eigenvalue problem Ax = λBx  is often difficult for users to 
analyze because it is frequently ill-conditioned. Occasionally, there are changes 
of variables that can be performed on the given problem to ease this ill-condi-
tioning. Suppose that B is singular, but A is nonsingular. Define the reciprocal µ 

τ
max Ax̃j λ̃j x̃j– 2

nε A 2 x̃j 2

-----------------------------=
1 j n≤ ≤

Ex̃j 2 Ax̃j λ̃jx̃j– 2=

κj ej
TX 1–=
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= λ –1. Then, the roles of A and B are interchanged so that the reformulated 
problem Bx = µAx is solved. Those generalized eigenvalues µj = 0  correspond 
to eigenvalues λj = infinity. The remaining λj = µj

–1. The generalized eigenvec-
tors for λj correspond to those for µj.

Now, suppose that B is nonsingular. The user can solve the ordinary eigenvalue 
problem Cx = λx , where C = B–1A. Matrix C is subject to perturbations due to 
ill-conditioning and rounding errors when computing B–1A. Computing the con-
dition numbers of the eigenvalues for C may, however, be helpful for analyzing 
the accuracy of results for the generalized problem.

There is another method that users can consider to reduce the generalized prob-
lem to an alternate ordinary problem. This technique is based on first computing 
a matrix decomposition B = PQ, where both P and Q are matrices that are “sim-
ple” to invert. Then, the given generalized problem is equivalent to the ordinary 
eigenvalue problem Fy = λy. The matrix F = P–1AQ–1 and the unnormalized 
eigenvectors of the generalized problem are given by x = Q–1y. An example of 
this reformulation is used in the case where A and B are real and symmetric, 
with B positive definite. Function EIGSYMGEN, documented on page 95, uses 
P = RT  and Q = R , where R is an upper-triangular matrix obtained from a 
Cholesky decomposition, B = RTR. The matrix F = R–TAR–1 is symmetric and 
real. Computation of the eigenvalue-eigenvector expansion for F is based on 
function EIG.
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EIG Function 
Computes the eigenexpansion of a real or complex matrix A. If the matrix is 
known to be symmetric or Hermitian, a keyword can be used to trigger more 
efficient algorithms.

Usage

result = EIG(a)

Input Parameters

a — Two-dimensional matrix containing the data.

Returned Value

result — A one-dimensional matrix containing the complex eigenvalues of the 
matrix.

Input Keywords

Double — If present and nonzero, double precision is used.

Symmetric — If present and nonzero, a is assumed to be symmetric in the real 
case and Hermitian in the complex case. Using keyword Symmetric triggers the 
use of a more appropriate algorithm for symmetric and Hermitian matrices.

Lower_Limit — Used with the keywords Upper_Limit and Symmetric to force 
the function EIG to return the eigenvalues and optionally, eigenvectors that lie 
in the interval with lower limit Lower_Limit and upper limit Upper_Limit. This 
keyword can be used only in those cases when Symmetric and Upper_Limit also 
are specified.

Default: (Lower_Limit, Upper_Limit) = (–infinity, +infinity)

Upper_Limit — Used with the keywords Lower_Limit and Symmetric to force 
the function EIG to return the eigenvalues and optionally, eigenvectors that lie 
in the interval with lower limit Lower_Limit and upper limit Upper_Limit. This 
keyword can be used only in those cases when Symmetric and Lower_Limit also 
are specified.

Default: (Lower_Limit, Upper_Limit) = (–infinity, +infinity)
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Output Keywords

Vectors — Specifies the named variable into which the two-dimensional array 
containing the eigenvectors of the matrix a is stored.

Number — Number of eigenvalues and eigenvectors in the range 
(Lower_Limit, Upper_Limit). This keyword is only available if the keyword 
Symmetric also is used. To use this keyword, Number and Symmetric must be 
used. 

Discussion

If A is a real, general matrix, function EIG computes the eigenvalues of A by a 
two-phase process. The matrix is reduced to upper Hessenberg form by elemen-
tary orthogonal or Gauss similarity transformations. Then, the eigenvalues are 
computed using a QR or combined LR-QR algorithm (Golub and Van Loan 
1989, pp. 373–382, and Watkins and Elsner 1990). The combined LR-QR algo-
rithm is based on an implementation by Jeff Haag and David Watkins. 
Eigenvectors are then calculated as required. When eigenvectors are computed, 
the QR algorithm is used to compute the eigenexpansion. When only eigenval-
ues are required, the combined LR-QR algorithm is used.

If A is a complex, general matrix, function EIG computes the eigenvalues of A 
by a two-phase process. The matrix is reduced to upper Hessenberg form by 
elementary Gauss transformations. Then, the eigenvalues are computed using an 
explicitly shifted LR algorithm. Eigenvectors are calculated during the itera-
tions for the eigenvalues (Martin and Wilkinson 1971).

If A is a real, symmetric matrix and keyword Symmetric is used, function EIG 
computes the eigenvalues of A by a two-phase process. The matrix is reduced to 
tridiagonal form by elementary orthogonal similarity transformations. Then, the 
eigenvalues are computed using a rational QR or bisection algorithm. Eigenvec-
tors are calculated as required (see Parlett 1980, pp. 169–173).

If A is a complex, Hermitian matrix and keyword Symmetric is used, function 
EIG computes the eigenvalues of A by a two-phase process. The matrix is 
reduced to tridiagonal form by elementary orthogonal similarity transformations. 
Then, the eigenvalues are computed using a rational QR or bisection algorithm. 
Eigenvectors are calculated as required.

If keyword Symmetric is used, it is possible to force function EIG to return the 
eigenvalues and optionally, eigenvectors that lie in a specified interval. The 
interval is defined using keywords Lower_Limit and Upper_Limit. The Number 
keyword is provided to return the number of elements of the returned array that 
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contain valid eigenvalues. The first Number elements of the returned array con-
tain the computed eigenvalues, and all remaining elements contain NaN (Not a 
Number).

Example 1

In this example, the eigenvalues of a real 3-by-3 matrix are computed.

RM, a, 3, 3

; Define the matrix.

row 0:  8  -1  -5

row 1: -4   4  -2

row 2: 18  -5  -7

eigval = EIG(a)

; Call EIG to compute the eigenvalues.

PM, eigval, Title = ’Eigenvalues of A’

; Output the results.

Eigenvalues of A

( 2.00000, 4.00001)

( 2.00000, -4.00001)

( 1.00000, 0.00000)

Example 2: Computing Eigenvectors

This example is a variation of the first example. Here, the eigenvectors are 
computed as well as the eigenvalues.

RM, a, 3, 3

; Define the 3-by-3 matrix.

row 0:  8 -1 -5

row 1: -4  4 -2

row 2: 18 -5 -7

eigval = EIG(a, Vectors = eigvec)

; Call EIG using keyword Vectors to specify the named variable into
; which the eigenvectors are stored.

PM, eigval, Title = ’Eigenvalues of A’

; Output the eigenvalues.

Eigenvalues of A

( 2.00000, 4.00000)

( 2.00000, -4.00000)
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( 1.00001, 0.00000)

PM, eigvec, Title = ’Eigenvectors of A’

; Output the eigenvectors.

Eigenvectors of A

( 0.316228, 0.316228)( 0.316228, -0.316228)

( 0.408248, 0.00000)

( 2.08616e-07, 0.632455)( 2.08616e-07, -0.632455)

( 0.816497, 0.00000)

( 0.632456, 0.00000)( 0.632456, 0.00000)

( 0.408247, 0.00000)

Example 3: Computing Eigenvalues of a Complex Matrix
RM, a, 4, 4, /Complex

; Define a complex matrix.

row 0: (5, 9) (5,  5) (-6, -6) (-7, -7)

row 1: (3, 3) (6, 10) (-5, -5) (-6, -6)

row 2: (2, 2) (3,  3) (-1, 3) (-5, -5)

row 3: (1, 1) (2,  2) (-3, -3) ( 0,  4)

eigval = EIG(a)

; Call EIG to compute the eigenvalues.

PM, eigval, Title = ’Eigenvalues of A’

; Output the results.

Eigenvalues of A

( 4.00000, 8.00000)

( 3.00000, 7.00000)

( 2.00000, 6.00000)

( 1.00000, 5.00000)

Warning Errors

MATH_SLOW_CONVERGENCE_GEN — Iteration for an eigenvalue did not con-
verge after # iterations.
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EIGSYMGEN Function 
Computes the generalized eigenexpansion of a system Ax = λBx. The matrices 
A and B are real and symmetric, and B is positive definite.

Usage

result = EIGSYMGEN(a, b)

Input Parameters

a — Two-dimensional matrix containing the symmetric coefficient matrix A.

b — Two-dimensional matrix containing the positive definite symmetric coeffi-
cient matrix B.

Returned Value

result — One-dimensional array containing the eigenvalues of the symmetric 
matrix.

Input Keywords

Double — If present and nonzero, double precision is used.

Output Keywords

Vectors — Compute eigenvectors of the problem. A two-dimensional array con-
taining the eigenvectors is returned in the variable name specified by Vectors.

Discussion

Function EIGSYMGEN computes the eigenvalues of a symmetric, positive defi-
nite eigenvalue problem by a three-phase process (Martin and Wilkinson 1971). 
Matrix B is reduced to factored form using the Cholesky decomposition. These 
factors are used to form a congruence transformation that yields a symmetric 
real matrix whose eigenexpansion is obtained. The problem is then transformed 
back to the original coordinates. Eigenvectors are calculated and transformed as 
required.
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Example 1

In this example, the generalized eigenexpansion of a system Ax = λBx, where A 
and B are 3-by-3 matrices, is computed.

RM, a, 3, 3

; Define the matrix A.

row 0: 1.1 1.2 1.4

row 1: 1.2 1.3 1.5

row 2: 1.4 1.5 1.6

RM, b, 3, 3

; Define the matrix B.

row 0: 2 1 0

row 1: 1 2 1

row 2: 0 1 2

eigval = EIGSYMGEN(a, b)

; Call EIGSYMGEN to compute the eigenexpansion.

PM, eigval, Title = ’Eigenvalues’

; Output the results.

Eigenvalues

1.38644

-0.0583479

-0.00309042

Example 2

This example is a variation of the first example. Here, the eigenvectors are 
computed as well as the eigenvalues.

RM, a, 3, 3

; Define the matrix A.

row 0: 1.1 1.2 1.4

row 1: 1.2 1.3 1.5

row 2: 1.4 1.5 1.6

RM, b, 3, 3

; Define the matrix B.

row 0: 2 1 0

row 1: 1 2 1

row 2: 0 1 2
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eigval = EIGSYMGEN(a, b, Vectors = eigvec)

; Call EIGSYMGEN with keyword Vectors to specify the named
; variable in which the vectors are stored.

PM, eigval, Title = ’Eigenvalues’

; Output the eigenvalues.

Eigenvalues

 1.38644

 -0.0583478

 -0.00309040

PM, eigvec, Title = ’Eigenvectors’

; Output the eigenvectors.

Eigenvectors

0.643094    -0.114730    -0.681688

-0.0223849    -0.687186     0.726597

0.765460     0.717365  -0.0857800

Warning Errors

MATH_SLOW_CONVERGENCE_SYM — Iteration for an eigenvalue failed to 
converge in 100 iterations before deflating.

Fatal Errors

MATH_SUBMATRIX_NOT_POS_DEFINITE — Leading submatrix of the 
input matrix is not positive definite.

MATH_MATRIX_B_NOT_POS_DEFINITE — Matrix B is not positive 
definite.
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GENEIG Procedure 
Computes the generalized eigenexpansion of a system Ax = λBx.

Usage

GENEIG, a, b, alpha, beta

Input Parameters

a — Two-dimensional array of size n-by-n containing the coefficient matrix A.

b — Two-dimensional array of size n-by-n containing the coefficient matrix B.

Output Parameters

alpha — One-dimensional array of size n containing scalars αi. If 
βi ≠ 0, λi = αi /βi for i = 0, …, n − 1 are the eigenvalues of the system. 

beta — One-dimensional array of size n.

Input Keywords

Double — If present and nonzero, double precision is used.

Output Keywords

Vectors — Named variable into which a two-dimensional array of size n-by-n 
containing eigenvectors of the problem is stored. Each vector is normalized to 
have Euclidean length equal to one.

Discussion

The function GENEIG uses the QZ algorithm to compute the eigenvalues and 
eigenvectors of the generalized eigensystem Ax = λBx, where A and B are 
matrices of order n. The eigenvalues for this problem can be infinite, so α and 
β are returned instead of λ. If β is nonzero, λ = α/β.

The first step of the QZ algorithm is to simultaneously reduce A to upper-Hes-
senberg form and B to upper-triangular form. Then, orthogonal transformations 
are used to reduce A to quasi-upper-triangular form while keeping B upper tri-
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angular. The generalized eigenvalues and eigenvectors for the reduced problem 
are then computed.

The function GENEIG is based on the QZ algorithm due to Moler and Stewart 
(1973), as implemented by the EISPACK routines QZHES, QZIT and QZVAL; 
see Garbow et al. (1977).

Example 1

In this example, the eigenvalue, λ, of system Ax = λBx is computed, where 

a  =  TRANSPOSE([[1.0, 0.5, 0.0], $

                [-10.0, 2.0, 0.0], $

                [5.0, 1.0, 0.5]])

b  =  TRANSPOSE([[0.5, 0.0, 0.0], $

                [3.0, 3.0, 0.0], $

                [4.0, 0.5, 1.0]])

; Compute eigenvalues

GENEIG, a, b, alpha, beta

; Print eigenvalues

PM, alpha/beta, Title = "Eigenvalues"

Eigenvalues

(     0.833334,      1.99304)

(     0.833333,     -1.99304)

(     0.500000,      0.00000)

Example 2

This example finds the eigenvalues and eigenvectors of the same eigensystem 
given in the last example.

a  =  TRANSPOSE([[1.0, 0.5, 0.0], $

                 [-10.0, 2.0, 0.0], $

                 [5.0, 1.0, 0.5]])
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b  =  TRANSPOSE([[0.5, 0.0, 0.0], $

                 [3.0, 3.0, 0.0], $

                 [4.0, 0.5, 1.0]])

; Compute eigenvalues

GENEIG, a, b, alpha, beta, Vectors = vectors

; Print eigenvalues

PM, alpha/beta, Title = "Eigenvalues"

Eigenvalues

(     0.833332,      1.99304)

(     0.833332,     -1.99304)

(     0.500000,     -0.00000)

; Print eigenvectors

PM, vectors, Title = "Eigenvectors"

Eigenvectors

(    -0.197112,     0.149911)(    -0.197112,    -0.149911)

( -1.53306e-08,      0.00000)

(   -0.0688163,    -0.567750)(   -0.0688163,     0.567750)

( -4.75248e-07,      0.00000)

(     0.782047,      0.00000)(     0.782047,      0.00000)

(      1.00000,      0.00000)

Example 3

In this example, the eigenvalue, λ, of system Ax = λBx is solved, where

a  =  TRANSPOSE([$

 [COMPLEX(1.0, 0.0), COMPLEX(0.5, 1.0), COMPLEX(0.0, 5.0)], $

 [COMPLEX(-10.0, 0.0), COMPLEX(2.0, 1.0), COMPLEX(0.0, 0.0)], $

 [COMPLEX(5.0, 1.0), COMPLEX(1.0, 0.0), COMPLEX(0.5, 3.0)]])

b  =  TRANSPOSE([$

 [COMPLEX(0.5, 0.0), COMPLEX(0.0, 0.0), COMPLEX(0.0, 0.0)], $
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 [COMPLEX(3.0, 3.0), COMPLEX(3.0, 3.0), COMPLEX(0.0, 1.0)], $

 [COMPLEX(4.0, 2.0), COMPLEX(0.5, 1.0), COMPLEX(1.0, 1.0)]])

; Compute eigenvalues

GENEIG, a, b, alpha, beta

; Print eigenvalues

PM, alpha/beta, Title  =  "Eigenvalues"

Eigenvalues

(     -8.18016,     -25.3799)

(      2.18006,     0.609113)

(     0.120108,    -0.389223)

Example 4

This example finds the eigenvalues and eigenvectors of the same eigensystem 
given in the last example.

a  =  TRANSPOSE([$

 [COMPLEX(1.0, 0.0), COMPLEX(0.5, 1.0), COMPLEX(0.0, 5.0)], $

 [COMPLEX(-10.0, 0.0), COMPLEX(2.0, 1.0), COMPLEX(0.0, 0.0)], $

 [COMPLEX(5.0, 1.0), COMPLEX(1.0, 0.0), COMPLEX(0.5, 3.0)]])

b  =  TRANSPOSE([$

 [COMPLEX(0.5, 0.0), COMPLEX(0.0,0.0), COMPLEX(0.0, 0.0)], $

 [COMPLEX(3.0,3.0), COMPLEX(3.0,3.0), COMPLEX(0.0, 1.0)], $

 [COMPLEX(4.0, 2.0), COMPLEX(0.5, 1.0), COMPLEX(1.0, 1.0)]])

; Compute eigenvalues

GENEIG, a, b, alpha, beta, Vectors = vectors

; Print eigenvalues

PM, alpha/beta, Title = "Eigenvalues"

Eigenvalues

(     -8.18018,     -25.3799)

(      2.18006,     0.609112)

(     0.120109,    -0.389223)

; Print eigenvecters

PM, vectors, Title = "Eigenvectors"

Eigenvectors

(    -0.326709,    -0.124509)(    -0.300678,    -0.244401)
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(    0.0370698,     0.151778)

(     0.176670,   0.00537758)(     0.895923,      0.00000)

(     0.957678,      0.00000)

(     0.920064,      0.00000)(    -0.201900,    0.0801192)

(    -0.221511,    0.0968290)
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CHAPTER

3

Interpolation and Approximation

Contents of Chapter 

Cubic Spline Interpolation

Derivative end conditions ...............  CSINTERP Function

Shape preserving ............................  CSSHAPE Function

B-spline Interpolation

One-dimensional and 
two-dimensional interpolation .........  BSINTERP Function

Knot sequence given 
interpolation data.............................  BSKNOTS Function

B-spline and Cubic Spline Evaluation and Integration

Evaluation and differentiation ...........  SPVALUE Function

Integration.......................................... SPINTEG Function

Least-squares Approximation and Smoothing

General functions ...............................  FCNLSQ Function

Splines with fixed knots........................  BSLSQ Function

Constrained spline fit .........................  CONLSQ Function

Cubic-smoothing spline ................  CSSMOOTH Function

Widget-based interface............. WgSplineTool Procedure
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Smooth one-dimensional data 
by error detection.................. SMOOTHDATA1D Function

Scattered Data Interpolation

Akima’s surface-fitting 
method ...................................  SCAT2DINTERP Function

Computes a fit using 
radial-basis functions ............................  RADBF Function

Evaluates a radial-basis fit.................... RADBE Function

Linear interpolation of vectors ........  INTERPOL Function

Bilinear interpolation at a set 
of reference points ............................ BILINEAR Function

*For more information on Standard Library routines, see “Where to Find 
PV-WAVE’s Libraries” in the PV-WAVE Programmer’s Guide. 
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Introduction
Many functions in this chapter produce cubic piecewise polynomial or general 
spline functions that either interpolate or approximate given data or are support 
functions for the evaluation and integration of these functions. Three major sub-
divisions of functions are provided. The cubic spline functions begin with the 
prefix CS and use the piecewise polynomial representation. The spline functions 
begin with the prefix BS and use the B-spline representation. The third major 
subdivision includes functions that operate on the output of both the cubic 
spline and B-spline functions. Most of the spline functions are based on routines 
documented by de Boor (1978).

General purpose routines also are provided for general least-squares fit to data 
and routines to interpolate or approximate scattered data in Rn for n ≥ 1.

Piecewise Polynomials 

A univariate piecewise polynomial function, p, is specified by giving its break-
point sequence ξ ∈Rn, the order k (degree k – 1) of its polynomial pieces, and 
the 
k x (n – 1) matrix C of its local polynomial coefficients. In terms of this infor-
mation, the piecewise polynomial (ppoly) function is given by the following 
equation:

The breakpoint sequence ξ is assumed to be strictly increasing, and the ppoly 
function is extended to the entire real axis by extrapolation from the first and 
last intervals. This representation is redundant when the ppoly function is 
known to be smooth. For example, if p is known to be continuous, then c1, i+1 
can be computed from the cji as follows:

For smooth ppoly, the nonredundant representation is used in terms of the 
“basis” or B-splines, at least when such a function is first to be determined.

p x( ) cij

x ξ i–( )j 1–

j 1–( )!
------------------------

j 1=

k

∑= for ξi x ξi 1+≤ ≤

c1 i 1+, p ξi 1+( ) cij

ξi 1+ ξi–( )j 1–

j 1–( )!
--------------------------------

j 1=

k

∑= =
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Splines and B-splines 

B-splines provide a particularly convenient and suitable basis for a given class 
of smooth ppoly functions. Such a class is specified by giving its breakpoint 
sequence, its order k, and the required smoothness across each of the interior 
breakpoints. The corresponding B-spline basis is specified by giving its knot 
sequence t ∈ RM. The specification rule is the following: If the class is to have 
all derivatives up to and including the j-th derivative continuous across the inte-
rior breakpoint ξi, then the number ξi should occur k – j – 1 times in the knot 
sequence. Assuming that ξ1 and ξn are the endpoints of the interval of interest, 
choose the first k knots equal to ξ1 and the last k knots equal to ξn. This can be 
done since the B-splines are defined to be right continuous near ξ1 and left con-
tinuous near ξn.

When the above construction is completed, a knot sequence t of length M is 
generated and there are m: = M – k B-splines of order k (for example, 
B0, ..., Bm – 1) that span the ppoly functions on the interval with the indicated 
smoothness. That is, each ppoly function in this class has a unique 
representation 

as a linear combination of B-splines. A B-spline is a particularly compact ppoly 
function. The function Bi is a nonnegative function that is nonzero only on the 
interval [ti, ti + k ] . More precisely, the support of the i-th B-spline is 
[ti, ti + k ]. No ppoly function in the same class (other than the zero function) 
has smaller support (i.e., vanishes on more intervals) than a B-spline. This 
makes B-splines particularly attractive basis functions since the influence of any 
particular B-spline coefficient extends only over a few intervals. When it is nec-
essary to emphasize the dependence of the B-spline on its parameters, the 
notation

Bi, k, t 

is used to denote the i-th B-spline of order k for the knot sequence t.

Cubic Splines 

Cubic splines are smooth (i.e., C1  or C2), fourth-order ppoly functions. For his-
torical and other reasons, cubic splines are the most frequently used ppoly 
functions. Therefore, special functions are provided for their construction and 
evaluation. These routines use the ppoly representation as described above for 
general ppoly functions (with k = 4).

p a0B0 a1B1 … am 1– Bm 1–+ + +=
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Two cubic spline interpolation functions, CSINTERP and CSSHAPE, are pro-
vided. Function CSINTERP allows the user to specify various endpoint 
conditions (such as the value of the first or second derivative at the right and 
left points). This means that the natural cubic spline can be obtained using this 
function by setting the second derivative to zero at both endpoints. Function 
CSSHAPE is designed so that the shape of the curve matches the shape of the 
data. In particular, one option of this function preserves the convexity of the 
data while the default attempts to minimize oscillations.

It is possible that the cubic spline interpolation functions will produce unsatis-
factory results. For example, the interpolant may not have the shape required by 
the user, or the data may be noisy and require a least-squares fit. The BSIN-
TERP interpolation function is more flexible, as it allows the user to choose the 
knots and order of the spline interpolant. The user is encouraged to use this rou-
tine and exploit the flexibility provided.

Tensor-product Splines 

The simplest method of obtaining multivariate interpolation and approximation 
functions is to take univariate methods and form a multivariate method via ten-
sor products. In the case of two-dimensional spline interpolation, the derivation 
proceeds as follows: Let tx be a knot sequence for splines of order kx and ty be 
a knot sequence for splines of order ky. Let Nx + kx be the length of tx and 
Ny + ky be the length of ty. Then, the tensor-product spline has the following 
form:

Given two sets of points,

 and , 

for which the corresponding univariate interpolation problem can be solved, the 
tensor-product interpolation problem finds the coefficients cnm, so that the fol-
lowing is true:

cnmBn kx tx, , x( )Bm ky ty, , y( )

Nx 1–

∑
Ny 1–

∑

xi{ } i 1=
Nx yi{ } i 1=

Ny

cnmBn kx tx, , xi( )Bm ky ty, , yj( )

Nx 1–

∑
Ny 1–

∑ fij=
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This problem can be solved efficiently by repeatedly solving univariate interpo-
lation problems as described in de Boor (1978, p. 347). Three-dimensional 
interpolation can be handled in an analogous manner. This chapter provides 
functions that compute the two-dimensional, tensor-product spline coefficients 
given two-dimensional interpolation data (BSINTERP) and functions that com-
pute the two-dimensional, tensor-product spline coefficients for a tensor-
product, least-squares problem (BSLSQ). In addition, evaluation, differentia-
tion, and integration routines (SPVALUE and SPINTEG) are provided for the 
two-dimensional, tensor-product spline functions. 

Scattered-data Interpolation and Approximation 

PV-WAVE:IMSL Mathematics provides functions to interpolate and approxi-
mate scattered data in Rn for n ≥ 1. Function SCAT2DINTERP interpolates 
scattered data in the plane and is based on work by Akima (1978), which uses 
C1 piecewise quintics on a triangular mesh. Function RADBF can be used to 
either interpolate or approximate scattered data in Rn  for n ≥ 1. The RADBF 
function computes approximations based on radial-basis functions. The fit com-
puted by RADBF can be evaluated using function RADBE. 

Least Squares 

PV-WAVE:IMSL Mathematics includes functions for smoothing noisy data. 
Function FCNLSQ computes regressions with user-supplied functions. Func-
tion BSLSQ computes a one- or two-dimensional, least-squares fit using splines 
with fixed knots or variable knots. This function produces cubic-spline, least-
squares fit by default. Keywords allow the user to choose the order and the knot 
sequence. 

PV-WAVE:IMSL Statistics contains many functions that provide for polynomial 
regression and general linear regression.

Smoothing by Cubic Splines 

One “smoothing spline” function is provided. The default action of 
CSSMOOTH estimates a smoothing parameter by cross-validation, then returns 
the cubic spline that smooths the data. If the user chooses to supply a smooth-
ing parameter, this function returns the appropriate cubic spline.
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Structures for Splines and Piecewise Polynomials 

This section is optional and is intended for users interested in more details con-
cerning the structures for splines and piecewise polynomials. 

A spline can be viewed as a mapping with domain Rd and target Rr, where d 
and r are positive integers. For this version of PV-WAVE:IMSL Mathematics, 
only r = 1 is supported. Thus, if s is a spline, then the following is true for 
some d and r:

s: Rd → Rr 

This implies that such a spline s must have d knot sequences and orders (one 
for each domain dimension). Thus, associated with s, knots and orders are as 
follows:

t0, ..., td – 1 

k0, ..., kd – 1 

The precise form of the spline follows:

s(x) = (s0(x), ..., sr – 1(x)) x = (x1, ..., xd) ∈ Rd

where

Note that ni is the number of knots in ti minus the order ki.

All the information for a spline is stored in a structure. Since, in general, the 
components of this structure are of varying lengths, an anonymous structure is 
defined for each spline. An example of the information returned by the INFO 
command with keyword Structures set and an argument containing a spline 
structure follows:

x = FINDGEN(10)

y = RANDOM(10)

spline = BSINTERP(x, y)

INFO, spline, /Structure

** Structure $1, 7 tags, 116 length:

DOMAIN_DIM LONG      1

TARGET_DIM LONG      1

si x( ) := … cj0 … jd 1–, ,
i B

j0 k0 t
0, ,
…B

jd 1– kd 1– t
d 1–, ,

j0 0=

n0 1–

∑
jd 1– 0=

nd 1– 1–

∑
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ORDER           LONG      4

NUM_COEF        LONG      10

NUM_KNOTS       LONG      14

KNOTS           FLOAT     Array(14)

COEF            FLOAT     Array(10)

For ppoly functions, a ppoly is viewed as a mapping with domain Rd and target 
Rr, where d and r are positive integers. Thus, if p is a ppoly, then the following 
is true for some d and r:

p: Rd → Rr 

For this version of PV-WAVE:IMSL Mathematics, only r = 1 is supported. This 
implies that such a ppoly p must have d breakpoint sequences and orders (one 
for each domain dimension). Thus, associated with p, breakpoints and orders are 
as follows:

ξ1, ..., ξd

k1, ..., kd

The precise form of the ppoly follows:

p(x) = (p0(x), ..., pr(x)) x = (x1, ..., xd) ∈ Rd

where

 

with

L j :=max {1, min{M j, nj – 1}}

where M j is chosen so that

(with  and ). 

Note that nj is the number of breakpoints in ξj.

pi x( ) := … c
L1 … L

d
l1 … ld, , , , ,

i x1 ξL1
1–( )l1

l1!
-------------------------…

xd ξLd
d–( )

ld

ld!
-------------------------

l1 0=

k1 1–

∑
ld 0=

kd 1–

∑

ξ
M

j
j xj ξM j 1+

j<≤ j 1 … d, ,=

ξ0
j ∞–= ξnj 1+

j ∞=
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All the information for a spline is stored in a structure. Since, in general, the 
components of this structure are of varying lengths, an anonymous structure is 
defined for each spline. An example of the information returned by the INFO 
command with keyword Structures set and an argument containing a spline 
structure is as follows:

x = FINDGEN(10)

y = RANDOM(10)

ppoly = CSINTERP(x, y)

INFO, ppoly, /Structure

** Structure $2, 7 tags, 204 length:

   DOMAIN_DIM     LONG      1

   TARGET_DIM     LONG  1

   ORDER          LONG      4

   NUM_COEF       LONG      36

   NUM_BREAKPOINTS LONG      10

BREAKPOINTS    FLOAT     Array(10)

   COEF          FLOAT     Array(36)

CSINTERP Function 
Computes a cubic spline interpolant, specifying various endpoint conditions. 
The default interpolant satisfies the not-a-knot condition. 

Usage

result = CSINTERP(xdata, fdata) 

Input Parameters

xdata — One-dimensional array containing the abscissas of the interpolation 
problem. 

fdata — One-dimensional array containing the ordinates for the interpolation 
problem. 

Returned Value

result — A structure that represents the cubic spline interpolant. 
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Input Keywords 

Double — If present and nonzero, double precision is used. 

ILeft — Sets the value for the first or second derivative of the interpolant at the 
left endpoint. Keyword ILeft is used to specify which derivative is set: ILeft = 1 
for the first derivative and ILeft = 2 for the second derivative. The only valid 
values for ILeft are 1 or 2. If ILeft is specified, then Left also must be used. 

Left — Sets the value for the first or second derivative of the interpolant at the 
left endpoint. If ILeft = i, then the interpolant s satisfies s(i)(xL) = Left. Here, xL 
is the leftmost abscissa. 

IRight — Sets the value for the first or second derivative of the interpolant at 
the right endpoint. Keyword IRight is used to specify which derivative is set: 
IRight = 1 for the first derivative and IRight = 2 for the second derivative. The 
only valid values for IRight are 1 or 2. If IRight is specified, then Right also 
must be used. 

Right — Sets the value for the first or second derivative of the interpolant at 
the right endpoint. If IRight = i, then the interpolant s satisfies s(i)(xR) = Right. 
Here, xR is the rightmost abscissa. 

Periodic — If present and nonzero, computes the C2 periodic interpolant to the 
data. The following is satisfied: 

s(i)
 (xL) = s(i) (xR)  i = 0, 1, 2

where s, xL, and xR are defined above.

Discussion

Function CSINTERP computes a C2 cubic spline interpolant to a set of data 
points (xi, fi) for the following:

i = 0, …, (N_ELEMENTS(xdata) – 1) = (n – 1)

The breakpoints of the spline are the abscissas. For all univariate interpolation 
functions, the abscissas need not be sorted. Endpoint conditions are to be 
selected by the user. The user can specify not-a-knot, or first or second deriva-
tives at each endpoint or C2 periodicity can be requested (see de Boor 1978, 
Chapter 4). If no defaults are selected, then the not-a-knot spline interpolant is 
computed. If the Periodic keyword is selected, then all other keywords are 
ignored and a C2 is computed. In this case, if the fdata values at the left and 
right endpoints are not the same, a warning message is issued and the right 
value is set equal to the left. If Left and ILeft or Right and IRight are selected, 
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the user has the ability to select the values of the first or second derivative at 
either endpoint. The default case (when the keyword is not used) is the not-a-
knot condition on that endpoint. Thus, when no keywords are chosen, this func-
tion produces the not-a-knot interpolant.

If the data (including the endpoint conditions) arise from the values of a smooth 
(for example, C4) function f, i.e., fi = f(xi), then the error behaves in a predict-
able fashion. Let ξ be the breakpoint vector for the above spline interpolant. 
Then, the maximum absolute error satisfies

where the following is true:

Example 1

In this example, a cubic spline interpolant to function values is computed and 
plotted along with the original data. Since the default settings are used, the 
interpolant is determined by the not-a-knot condition (see de Boor 1978).

x = FINDGEN(11)/10

; Generate the abscissas.

f = SIN(15 * x)

; Generate the function values.

pp = CSINTERP(x, f)

; Compute the spline interpolant.

ppval = SPVALUE(FINDGEN(100)/99, pp)

PLOT, FINDGEN(100)/99, ppval

; Plot the results.

OPLOT, x, f, Psym = 6

f s– ξ0 ξn,[ ] C f 4( )
ξ0 ξn,[ ] ξ 4≤

ξ := max ξ i 1+ ξi– .

i 0 … n 1–, ,=
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Figure 3-1  Cubic spline interpolant.

Example 2

In this example, a cubic spline interpolant to function values is computed. The 
value of the derivative at the left endpoint and the value of the second deriva-
tive at the right endpoint are specified. The resulting spline and original data are 
then plotted.

x = FINDGEN(11)/10

y = SIN(15 * x)

pp = CSINTERP(x, y, ILeft = 1, Left = 0, $

IRight = 2, Right = -225 * SIN(15))

ppval = SPVALUE(FINDGEN(100)/99, pp)

PLOT, FINDGEN(100)/99, ppval

OPLOT, x, y, Psym = 6

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.5
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Figure 3-2  Cubic spline interpolant with endpoint conditions specified.

Warning Errors

MATH_NOT_PERIODIC — Data are not periodic. The rightmost fdata value is 
set to the leftmost fdata value.

Fatal Errors

MATH_DUPLICATE_XDATA_VALUES — The xdata values must be distinct.
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CSSHAPE Function 
Computes a shape-preserving cubic spline.

Usage

result = CSSHAPE(xdata, fdata)

Input Parameters

xdata — One-dimensional array containing the abscissas of the interpolation 
problem.

fdata — One-dimensional array containing the ordinates for the interpolation 
problem.

Returned Value

result — A structure that represents the cubic spline interpolant.

Input Keywords

Double — If present and nonzero, double precision is used.

Concave — If present and nonzero, CSSHAPE produces a cubic interpolant that 
preserves the concavity of the data.

Itmax — Allows the user to set the maximum number of iterations of New-
ton’s Method. To use Itmax, keyword Concave must also be set. 

Default: Itmax = 25

Discussion

Function CSSHAPE computes a C1cubic spline interpolant to a set of data 
points (xi, fi) for the following:

i = 0, …, (N_ELEMENTS(xdata) – 1) = (n – 1)

The breakpoints of the spline are the abscissas. This computation is based on a 
method by Akima (1970) to combat wiggles in the interpolant. Endpoint condi-
tions are automatically determined by the program (see Akima 1970, de Boor 
1978).
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If the Concave keyword is set, then this function computes a cubic spline inter-
polant to the data. For ease of explanation, xi < xi + 1  is assumed, although it is 
not necessary for the user to sort these data values. If the data are strictly con-
vex, then the computed spline is convex, C2, and minimizes the expression

over all convex C1functions that interpolate the data. In the general case, when 
the data have both convex and concave regions, the convexity of the spline is 
consistent with the data, and the above integral is minimized under the appro-
priate constraints. For more information on this interpolation scheme, refer to 
Micchelli et al. (1985) and Irvine et al. (1986).

One important feature of the splines produced by this function is that it is not 
possible, a priori, to predict the number of breakpoints of the resulting interpo-
lant. In most cases, there will be breakpoints at places other than data locations. 
This function should be used when it is important to preserve the convex and 
concave regions implied by the data.

Both methods are nonlinear, and although the interpolant is a piecewise cubic, 
cubic polynomials are not reproduced. (However, linear polynomials are repro-
duced.) This explains the theoretical error estimate below.

If the data points arise from the values of a smooth (for example, C4) function f, 
i.e., fi = f(xi), then the error behaves in a predictable fashion. Let ξ be the break-
point vector for either of the above spline interpolants. Then, the maximum 
absolute error satisfies

where

and ξm is the last breakpoint.

The returned value for this function is a structure. This structure contains all the 
information to determine the spline (stored as a piecewise polynomial) that is 
computed by this function. For example, the following code sequence evaluates 
this spline at x and returns the value in y:

y = SPVALUE(x, spline)

g″( )2

x1

xn∫

f s– ξ0 ξn,[ ] C f
2( )

ξ0 ξn,[ ] ξ 2≤

ξ := max ξi 1+ ξi–

i 0 … n 1–, ,=
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Example 1

In this example, a cubic spline interpolant to function values is computed. Eval-
uations of the computed spline are plotted along with the original data values.

x = FINDGEN(10)/9

; Define the abscissas.

f = FLTARR(10)

f(0:4) = 0.25

f(5:9) = 0.75

; Define the function values.

pp = CSSHAPE(x, f)

; Compute the interpolant.

ppval = SPVALUE(FINDGEN(100)/99, pp)

; Evaluate the interpolant at 100 values in [0,1]. 

PLOT, FINDGEN(100)/99, ppval

; Plot the results.

OPLOT, x, f, Psym = 6

Figure 3-3  Shape-preserving cubic spline.

Example 2

This example compares interpolants computed by CSINTERP (page 111) and 
CSSHAPE with keyword Concave.

x = [0, .1, .2, .3, .4, .5, .6, .8, 1]
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0.0
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0.8
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y = [0, .9, .95, .9, .1, .05, .05, .2, 1]

; Define the data set.

pp1 = CSINTERP(x, y)

; Compute the interpolant from CSINTERP.

pp2 = CSSHAPE(x, y, /Concave)

; Compute the interpolant from CSSHAPE with keyword Concave.

x2 = FINDGEN(100)/99

PLOT, x2, SPVALUE(x2, pp1), Linestyle = 2

; Plot the results.

OPLOT, x2, SPVALUE(x2, pp2)

OPLOT, x, y, Psym = 6

XYOUTS, .4, .9, ’CSINTERP’, Charsize = 1.2

OPLOT, [.73, .85], [.925, .925], $

Linestyle = 2

XYOUTS, .4, .8, ’CSSHAPE !cwith CONCAVE’, $

Charsize = 1.2

OPLOT, [.73, .85], [.8, .8]

XYOUTS, .4, .6, ’Original data’, $

Charsize = 1.2

OPLOT, [.73], [.622], Psym = 6

Figure 3-4  Comparison between cubic spline and concavity-preserving cubic spline.
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Warning Errors

MATH_MAX_ITERATIONS_REACHED — Maximum number of iterations has 
been reached. The best approximation is returned.

Fatal Errors

MATH_DUPLICATE_XDATA_VALUES — The xdata values must be distinct.

BSINTERP Function 
Computes a one- or two-dimensional spline interpolant.

Usage

result = BSINTERP(xdata, fdata)

result = BSINTERP(xdata, ydata, fdata)

Input Parameters

If a one-dimensional spline is desired, then the arguments xdata and fdata are 
required. If a two-dimensional, tensor-product spline is desired, then xdata, 
ydata, and fdata are required.

xdata  — Array containing the abscissas in the x-direction of the interpolation 
problem.

ydata — Array containing the abscissas in the y-direction of the interpolation 
problem.

fdata — Array containing the ordinates of the interpolation problem. If a one-
dimensional spline is being computed, then fdata (i) is the data value at xdata 
(i). If a two-dimensional spline is being computed, then fdata is a two-dimen-
sional array, where fdata (i, j) is the data value at (xdata (i), ydata (i)).

Returned Value

result — A structure containing information that defines the one- or two-dimen-
sional spline.
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Keywords

Double — If present and nonzero, double precision is used.

XOrder — Specifies the order of the spline in the x-direction.

Default: XOrder = 4, i.e., cubic splines

YOrder — Specifies the order of the spline in the y-direction. If a one-dimen-
sional spline is being computed, then YOrder has no effect on the computations.

Default: YOrder = 4, i.e., cubic splines

XKnots — Specifies the array of knots in the x-direction to be used when com-
puting the definition of the spline.

Default: knots are selected by function BSKNOTS using its defaults

YKnots — Specifies the array of knots in the y-direction to be used when com-
puting the definition of the spline.

Default: knots are selected by function BSKNOTS using its defaults

Discussion 

Function BSINTERP is designed to compute either a one-dimensional spline 
interpolant or two-dimensional, tensor-product spline interpolant to input data. 
The decision of whether to compute the one- or two-dimensional spline is based 
on the number of arguments passed to the function. Keywords are provided to 
allow the user to specify the order of the spline and the knots used for the 
spline. When computing a one-dimensional spline, the available keywords are 
XOrder and XKnots. When computing a two-dimensional spline, the user can 
specify the order and knots in x-direction and/or y-direction using keywords 
XOrder, XKnots, YOrder, and YKnots.

Separate discussions on one- and two-dimensional splines follow.

One-dimensional B-splines

Given the data points x = xdata, f = fdata, and the number of elements (n) in 
xdata and fdata, the default action of BSINTERP computes a cubic (k = 4) 
spline interpolant s to the data using the default knot sequence generated by 
function BSKNOTS (page 128).

Optional argument XOrder allows the user to choose the order, k, of the spline 
interpolant; optional argument XKnots allows user specification of knots.
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Function BSINTERP is based on the routine SPLINT by de Boor (1978, p. 
204).

First, BSINTERP sorts the xdata vector and stores the result in x. The elements 
of the fdata vector are permuted appropriately and stored in f, yielding the 
equivalent data (xi, fi) for i = 0 to n – 1.

The following preliminary checks are performed on the data:

xi < xi + 1 i = 0, ..., n – 2 

ti < ti + k i = 0, ..., n – 1

tt ≤ ti + 1 i = 0, ..., n + k – 2

The first test checks to see that the abscissas are distinct. The second and third 
inequalities verify that a valid knot sequence has been specified.

In order for the interpolation matrix to be nonsingular, tk – 1 ≤ xi ≤ tn  is also 
checked for i = 0 to n – 1. This first inequality in the last check is necessary 
since the method used to generate the entries of the interpolation matrix requires 
that the k possibly nonzero B-splines at xi

Bj – k + 1, ..., Bj where j satisfies tj ≤ xi < tj + 1 

be well-defined (that is, j – k + 1 ≥ 0). 

General conditions are not known for the exact behavior of the error in spline 
interpolation; however, if t and x are selected properly and the data points arise 
from the values of a smooth (for example, Ck) function f, i.e., fi = f(xi), then the 
error behaves in a predictable fashion. The maximum absolute error satisfies 

where the following is true:

For more information on this problem, see de Boor (1978, Chapter 13) and the 
references therein. This function can be used in place of function CSINTERP 
(page 111).

The returned value for this function is a structure. This structure contains all the 
information to determine the spline (stored as a linear combination of 

f s– tk 1– tn,[ ] C f k( )
tk 1– tn,[ ] t k≤

t := max ti 1+ ti–
i k 1– … n 1–, ,=
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B-splines) that is computed by this function. For example, the following code 
sequence evaluates this spline at x and returns the value in y:

y = SPVALUE(x, spline)

Two-dimensional, Tensor-product B-splines

If arguments xdata, ydata, and fdata are all included in the call to function 
BSINTERP, the function computes a two-dimensional, tensor-product spline 
interpolant. The tensor-product spline interpolant to data {(xi, yj, fij)}, where 
0 ≤ i ≤ nx – 1 and 0 ≤ j ≤ ny – 1, has the form

where kx and ky are the orders of the splines. These numbers are defaulted to 4 
but can be set to any positive integer using keywords XOrder and YOrder. Like-
wise, tx and ty are the corresponding knot sequences (XKnots and YKnots). 
These values are defaulted to the knots returned by function BSKNOTS. The 
algorithm requires that the following is true:

tx (kx – 1) ≤ xi ≤ tx (nx) 0 ≤ i ≤ nx – 1 

ty (ky – 1) ≤ yj ≤ ty (ny) 0 ≤ j ≤ ny – 1 

Tensor-product spline interpolants in two dimensions can be computed quite 
efficiently by solving (repeatedly) two univariate interpolation problems. The 
computation is motivated by the following observations: 

Setting 

, 

note that for each fixed i from 0 to nx – 1, there are ny linear equations in the 
same number of unknowns as can be seen below. 

cnm Bn kx tx, , x( )Bm ky ty, , y( )

nx 1–

∑
ny 1–

∑

cnm Bn kx tx, , xi( )Bm ky ty, , yj( )

nx 1–

∑
ny 1–

∑ fij=

hmi cnmBn kx tx, , xi( )
n 0=

nx 1–

∑=

hmiBm ky ty, , yi( )

ny 1–

∑ fij=
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The same matrix appears in the equation above.

Thus, this matrix is factored only once, then the factorization to solve the nx 
right-hand sides is applied. Once this is done and hmi is computed, then the coef-
ficients cnm are solved using the relation 

for m from 0 to ny – 1, which involves one factorization and ny solutions to the 
different right-hand sides. This ability of function BSINTERP is based on the 
SPLI2D routine by de Boor (1978, p. 347).

The returned value is a structure containing all the information to determine the 
spline (stored in B-spline format) that is computed by this function. For exam-
ple, the following code sequence evaluates this spline at (x, y) and returns the 
value in z:

z = SPVALUE(x, y, spline)

Example 1

In this example, a one-dimensional B-spline interpolant to function values is 
computed. Evaluations of the computed spline are then plotted along with the 
original data values. Since the default settings are being used, the interpolant is 
determined by the not-a-knot condition (see de Boor 1978).

x = FINDGEN(11)/10

; Define data values.

f = SIN(15 * x)

bs = BSINTERP(x, f)

; Compute interpolant.

bsval = SPVALUE(FINDGEN(100)/99, bs)

PLOT, FINDGEN(100)/99, bsval

; Output results.

OPLOT, x, f, Psym = 6

Bm ky ty, , yj( )[ ] 1 m j ny 1–≤,≤

cnmBn kx tx, , xi( )

nx 1–

∑ hmi=



BSINTERP Function  125

Figure 3-5  B-spline interpolant.

Example 2

In this example, a two-dimensional, tensor-product B-spline interpolant to grid-
ded data is computed.

x = FINDGEN(5)/4

; Define the abscissas in the x-direction.

y = FINDGEN(5)/4

; Define the abscissas in the y-direction.

f = FLTARR(5, 5)

; Define the sample function values.

FOR i = 0, 4 DO $

f(i, *) = SIN(2 * x(i)) - COS(5 * y)

bs = BSINTERP(x, y, f)

; Compute the spline interpolant.

bsval = SPVALUE(FINDGEN(20)/19, $

FINDGEN(20)/19, bs)

; Use SPVALUE to evaluate the computed spline.

!P.Charsize = 1.5

!P.Multi = [0, 1, 2]

WINDOW, XSize = 400, YSize = 800

; Plot the original and computed surfaces in a tall window.

SURFACE, f, x, y
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SURFACE, bsval, FINDGEN(20)/19, $

FINDGEN(20)/19

Figure 3-6  Two-dimensional B-spline interpolant to gridded data.

Warning Errors

MATH_ILL_COND_INTERP_PROB — Interpolation matrix is ill-conditioned. 
Solution might not be accurate.
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Fatal Errors

MATH_DUPLICATE_XDATA_VALUES — The xdata values must be distinct.

MATH_YDATA_NOT_INCREASING — The ydata values must be strictly 
increasing.

MATH_KNOT_MULTIPLICITY — Multiplicity of the knots cannot exceed the 
order of the spline.

MATH_KNOT_NOT_INCREASING — Knots must be nondecreasing.

MATH_KNOT_XDATA_INTERLACING — The i-th smallest element of xdata 
(xi) must satisfy ti ≤ xi < ti + Order, where t is the knot sequence.

MATH_XDATA_TOO_LARGE — Array xdata must satisfy 
xdatai ≤ tndata, for i = 1, …, ndata.

MATH_XDATA_TOO_SMALL — Array xdata must satisfy 
xdatai ≥ tOrder – 1, for i = 1, …, ndata.

MATH_KNOT_DATA_INTERLACING — The i-th smallest element of the data 
arrays xdata and ydata must satisfy ti ≤ datai + Order, where t is the knot 
sequence.

MATH_DATA_TOO_LARGE — Data arrays xdata and ydata must satisfy 
datai ≤ tnum_data, for i = 1, …, num_data.

MATH_DATA_TOO_SMALL — Data arrays xdata and ydata must satisfy
datai ≥ tOrder – 1, for i = 1, …, num_data.
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BSKNOTS Function 
Computes the knots for a spline interpolant.

Usage

result = BSKNOTS(xdata)

Input Parameters

xdata — One-dimensional array containing the abscissas of the interpolation 
problem.

Returned Value

result — A one-dimensional array containing the computed knots.

Input Keywords

Double — If present and nonzero, double precision is used.

Order — Order of the spline subspace for which the knots are desired.

Default: Order = 4, i.e., cubic splines

Optimum — If present and nonzero, knots that satisfy an optimal criterion are 
computed. See Discussion for more information.

Itmax — Integer value used to set the maximum number of iterations of New-
ton’s method. To use this keyword, keyword Optimum must also be set. 

Default: Itmax = 10

Discussion

Given the data points x = xdata, the order of the spline k = Order, and the num-
ber n = N_ELEMENTS (xdata) of elements in xdata, the default action of 
BSKNOTS returns a knot sequence that is appropriate for interpolation of data 
on x by splines of order k (the default order is k = 4). The knot sequence is con-
tained in its n + k elements. If k is even and it is assumed that the entries in the 
input vector x are increasing, then the resulting knot sequence t is returned as 
follows:
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ti = x0  for i = 0, …, k – 1

ti = xi – k/2 – 1  for i = k, …, n – 1 (1)

ti = xn – 1  for i = n, …, n + k – 1

There is some discussion concerning this selection of knots in de Boor (1978, p. 
211). If k is odd, then t is returned as follows:

It is not necessary to sort the values in xdata.

If keyword Optimum is set, then the knot sequence returned minimizes the con-
stant c in the error estimate

|| f – s || ≤ c || f (k) || 

where f is any function in Ck and s is the spline interpolant to f at the abscissa x 
with knot sequence t.

The algorithm is based on a routine described by de Boor (1978, p. 204), which 
in turn is based on a theorem of Micchelli et al. (1976).

Example 1

In this example, knots for a cubic spline are generated and printed. Notice that 
the knots are stacked at the endpoints; also, the second and next-to-last data 
points are not knots.

x = FINDGEN(6)

knots = BSKNOTS(x)

PM, knots, Format = ’(f5.2)’

 0.00

 0.00

 0.00

 0.00

 2.00

 3.00

ti x0=

ti xn 1–=

ti
1
2
--- x

i
k 1–

2
-----------– 1–

x
i 1–

k 2–
2

-----------–
+

 
 =

for i 0 … k 1–, ,=

for i k … n 1–, ,=

for i n … n k 1–+, ,=
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 5.00

 5.00

 5.00

 5.00

Example 2

This example compares the default knots with the knots returned using key-
word Optimize. The order also is changed from the default value of 4 to 3.

x = FINDGEN(11)/10

; Define the abscissa values.

f = FLTARR(11)

; Define the function values.

f(0:3) = .25

f(4:7) = .5

f(8:10) = .25

sp1 = BSINTERP(x, f)

; Compute the default spline.

knots2 = BSKNOTS(x, /Optimum, Order = 3)

; Compute the optimum knots of order 3.

sp2 = BSINTERP(x, f, XKnots = knots2, XOrder = 3)

; Compute the spline of order 3, with the optimum knots.

x2 = FINDGEN(100)/99

; Evaluate the two splines for plotting.

sp1eval = SPVALUE(x2, sp1)

sp2eval = SPVALUE(x2, sp2)

PLOT, x2, sp1eval, Linestyle = 2

; Plot the results.

OPLOT, x2, sp2eval

OPLOT, x, f, Psym = 6

XYOUTS, .25, .18, ’With optimum knots:’, $

Charsize = 1.5

OPLOT, [.65, .75], [.188, .188]

XYOUTS, .25, .135, ’With default knots:’, Charsize = 1.5

OPLOT, [.65, .75], [.143, .143], $

Linestyle = 2

XYOUTS, .3, .09, ’Original data’, $

Charsize = 1.5
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OPLOT, [.7], [.098], Psym = 6

Figure 3-7  Example of optimum knot placement.

Warning Errors

MATH_NO_CONV_NEWTON — Newton’s method iteration did not converge.

Fatal Errors

MATH_DUPLICATE_XDATA_VALUES — The xdata values must be distinct.

MATH_ILL_COND_LIN_SYS — Interpolation matrix is singular. The xdata 
values may be too close together.
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SPVALUE Function 
Computes values of a spline or values of one of its derivatives.

Usage

result = SPVALUE(x, spline)

result = SPVALUE(x, y, spline)

Input Parameters

If evaluation of a one-dimensional spline is desired, then arguments x and spline 
are required. If evaluation of a two-dimensional spline is desired, then x, y, and 
spline are required.

x — Scalar value or an array of values at which the spline is to be evaluated in 
the x-direction. If x is an array, then x must be strictly increasing, i.e., 
x (i) < x (i + 1) for i = 0, (N_ELEMENTS (x) – 2).

y — Scalar value or an array of values at which the spline is to be evaluated in 
the y-direction. This argument should only be used if spline is a two-
dimensional, tensor-product spline. If y is an array, then x must be strictly 
increasing, i.e., y (i) < y (i + 1) for i = 0, (N_ELEMENTS (y) – 2).

spline — Structure that represents the spline.

Returned Value

result — The values of a spline or one of its derivatives.

Input Keywords

XDeriv  — Let XDeriv = p, and let s be the spline that is represented by spline.

If s is a one-dimensional spline, this keyword produces the p-th derivative of s 
at x, s(p) (x). If s is a two-dimensional spline, this keyword specifies the order of 
the partial derivative in the x-direction. Let q = YDeriv, which has a default 
value of 0. Then, SPVALUE produces the (p, q)-th derivative of s at (x, y), 
s(p, q)(x, y).

Default: XDeriv = 0
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YDeriv  — If s = spline is a two-dimensional spline, this keyword specifies the 
order of the partial derivative in the y-direction. Let p = XDeriv, which has a 
default value of zero, and q = YDeriv. Then, SPVALUE produces the (p, q)-th 
derivative of s at (x, y), s(p, q)(x, y). If spline is a one-dimensional spline, this 
keyword has no effect on computations.

Default: YDeriv = 0

Discussion

Function SPVALUE can be used to evaluate splines of the following type:

•  Piecewise polynomials returned by CSINTERP (page 111), CSSHAPE 
(page 116), and CSSMOOTH (page 159)

•  One-dimensional B-splines returned by BSINTERP (page 120), BSLSQ 
(page 144), and CONLSQ (page 154)

•  Two-dimensional, tensor-product B-splines returned from BSINTERP 
(page 120) and BSLSQ (page 144)

If spline is a piecewise polynomial, function SPVALUE computes the values of 
a cubic spline or one of its derivatives. In this case, the user is required to sup-
ply the arguments x and spline and must not supply the argument y. If x is a 
scalar, then a scalar is returned. If x is a one-dimensional array, then a one-
dimensional array of values is returned.The first and last pieces of the cubic 
spline are extrapolated so that the cubic spline structures returned by the cubic 
spline routines are defined and can be evaluated on the entire real line. This 
ability is based on the routine PPVALU by de Boor (1978, p. 89).

If spline is a one-dimensional B-spline, the SPVALUE function computes the 
values of a spline or one of its derivatives. In this case, the user is required to 
supply the arguments x and spline and must not supply the argument y. If x is a 
scalar, then a scalar is returned. If x is a one-dimensional array, then a one-
dimensional array of values is returned. This ability is based on the routine 
BVALUE by de Boor (1978, p. 144).

If spline is a two-dimensional, tensor-product B-spline, the SPVALUE function 
computes the values of a tensor-product spline or one of its derivatives. In this 
case, the user is required to supply the arguments x, y, and spline. If x and y are 
both scalars, then a scalar is returned. If x and y are both one-dimensional 
arrays, then a two-dimensional array of values is returned, where the (i, j)-th 
element of the returned matrix is the desired value of SPLINE (x (i), y (j)). This 
ability is based on the discussion in de Boor (1978, pp. 351–353). 
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Example 1

In this example, a cubic spline interpolant to function values is computed. The 
spline is then evaluated, and the results are plotted. Since the default settings 
are used, the interpolant is determined by the not-a-knot condition (see de Boor 
1978).

x = FINDGEN(10)/9

f = SIN(15 * x)

pp = CSINTERP(x, f)

x2 = FINDGEN(100)/99

ppeval = SPVALUE(x2, pp)

PLOT, x2, ppeval

Figure 3-8  Plot of spline evaluation.

Example 2

This example computes a two-dimensional, tensor-product B-spline using 
BSINTERP (page 120), then uses SPVALUE to evaluate the spline on a grid, 
and plots the results.

x = FINDGEN(5)/4

y = FINDGEN(5)/4

f = FLTARR(5, 5)

FOR i = 0, 4 DO f(i,*) = SIN(2 * !Pi * x(i)) * (-COS(!Pi*y/2))

; Generate the data.

bs = BSINTERP(x, y, f)

; Compute the spline by calling BSINTERP.
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bsval = FLTARR(20, 20)

FOR i = 0, 19 DO BSVAL(i, *) = SPVALUE(i/19., FINDGEN(20)/19, 
bs)

; Evaluate the spline on a grid.

!P.Multi = [0, 1, 2]

WINDOW, XSize = 400, YSize = 800

; Plot the original data and the evaluations of the spline in the same plot window.

ax = 50

; The angle of rotation about the x-axis inthe plots is defined byax. 

!P.Charsize = 1.5

SURFACE, f, x, y, Ax = ax, XTitle = ’X’, $

YTitle = ’Y’

SURFACE, bsval, FINDGEN(20)/19, $

FINDGEN(20)/19, Ax = ax, $

XTitle = ’X’, YTitle = ’Y’
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Figure 3-9  Plot of evaluations of two-dimensional spline.

Warning Errors

MATH_X_NOT_WITHIN_KNOTS — Value of x does not lie within the knot 
sequence.

MATH_Y_NOT_WITHIN_KNOTS — Value of y does not lie within the knot 
sequence.

Fatal Errors

MATH_KNOT_MULTIPLICITY — Multiplicity of the knots cannot exceed the 
order of the spline.

MATH_KNOT_NOT_INCREASING — Knots must be nondecreasing.
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SPINTEG Function 
Computes the integral of a one- or two-dimensional spline.

Usage

result = SPINTEG(a, b, spline)

result = SPINTEG(a, b, c, d, spline)

Input Parameters

If integration of a one-dimensional spline is desired, then arguments a, b, and 
spline are required. If integration of a two-dimensional spline is desired, then a, 
b, c, d, and spline are required.

a — Right endpoint of integration.

b — Left endpoint of integration.

c — Right endpoint of integration for the second variable of the tensor-product 
spline. This argument should only be used if spline is a two-dimensional, ten-
sor-product spline.

d — Left endpoint of integration for the second variable of the tensor-product 
spline. This argument should only be used if spline is a two-dimensional, ten-
sor-product spline.

spline — Structure that represents the spline to be integrated.

Returned Value

result — If spline is a one-dimensional spline, then the returned value is the 
integral from a to b of spline. If spline is a two-dimensional, tensor-product 
spline, then the returned value is the value of the integral of spline over the 
rectangle [a, b] x [c, d]. If no value can be computed, NaN (Not a Number) is 
returned.

Discussion

Function SPINTEG can be used to integrate splines of the following type:

•  Piecewise polynomials returned by CSINTERP (page 111), CSSHAPE 
(page 116), and CSSMOOTH (page 159)
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•  One-dimensional B-splines returned by BSINTERP (page 120), BSLSQ 
(page 144), and CONLSQ (page 154)

•  Two-dimensional, tensor-product B-splines returned from BSINTERP and 
BSLSQ

If s = spline is a one-dimensional piecewise polynomial or B-spline, then 
SPINTEG computes

. 

If spline is a one-dimensional B-spline, then this function uses identity (22) of 
de Boor (1978, p. 115).

If s = spline is a two-dimensional, tensor-product spline, then the arguments c 
and d are required, and SPINTEG computes

. 

This function uses the (univariate integration) identity (22) of de Boor (1978, p. 
151)

where t0 ≤ x ≤ tr. It assumes (for all knot sequences) that the first and last k 
knots are stacked; that is, t0 = . . . = tk – 1 and tn = . . . = tn + k – 1, where k is 
the order of the spline in the x or y direction.
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Example

In this example, a cubic spline interpolant to function values is computed. The 
values of the integral of this spline are then compared with the exact integral 
values. Since the default settings are being used, the interpolant is determined 
by the not-a-knot condition (de Boor 1978).

n = 21

; Generate the data.

x = FINDGEN(n)/(n - 1)

f = SIN(15 * x)

pp = CSINTERP(x, f)

; Compute the interpolant.

results = FLTARR(22, 4)

; Define an array to hold some results to be output later.

FOR i = n/2, 3 * n/2 DO BEGIN $

x2 = i/FLOAT(2 * n - 2) &$

y = SPINTEG(0, x2, pp) &$

results(i - n/2, *) = &$

[x2, (1 - COS(15 * x2))/15, y, &$

ABS((1 - COS(15 * x2))/15 - y)] &$

; Loop over different limits of integration and compare the
; results with the true answer.

ENDFOR

PM, results, Format = ’(4f12.4)’, $

 Title  = ’ X True Approx Error’

; Output the results.

X        True        Approx      Error

0.2500      0.1214      0.1215      0.0001

0.2750      0.1036      0.1037      0.0001

0.3000      0.0807      0.0808      0.0001

0.3250      0.0559      0.0560      0.0001

0.3500      0.0325      0.0327      0.0001

0.3750      0.0139      0.0141      0.0002

0.4000      0.0027      0.0028      0.0002

0.4250      0.0003      0.0004      0.0002

0.4500      0.0071      0.0073      0.0002

0.4750      0.0223      0.0224      0.0001

0.5000      0.0436      0.0437      0.0001
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0.5250      0.0681      0.0682      0.0001

0.5500      0.0924      0.0925      0.0001

0.5750      0.1131      0.1132      0.0001

0.6000      0.1274      0.1275      0.0001

0.6250      0.1333      0.1333      0.0001

0.6500      0.1298      0.1299      0.0001

0.6750      0.1176      0.1177      0.0001

0.7000      0.0984      0.0985      0.0001

0.7250      0.0747      0.0748      0.0001

0.7500      0.0499      0.0500      0.0001

0.7750      0.0274      0.0276      0.0001

Warning Errors

MATH_SPLINE_LEFT_ENDPT — Left endpoint of x integration is not within 
the knot sequence. Integration occurs only from tOrder – 1 to b.

MATH_SPLINE_RIGHT_ENDPT — Right endpoint of x integration is not 
within the knot sequence. Integration occurs only from tOrder – 1 to a.

MATH_SPLINE_LEFT_ENDPT_1 — Left endpoint of x integration is not 
within the knot sequence. Integration occurs only from b to tSpline_Space_Dim – 1.

MATH_SPLINE_RIGHT_ENDPT_1 — Right endpoint of x integration is not 
within the knot sequence. Integration occurs only from a to tSpline_Space_Dim – 1.

MATH_SPLINE_LEFT_ENDPT_2 — Left endpoint of y integration is not 
within the knot sequence. Integration occurs only from tOrder – 1 to d.

MATH_SPLINE_RIGHT_ENDPT_2 — Right endpoint of y integration is not 
within the knot sequence. Integration occurs only from tOrder – 1 to c.

MATH_SPLINE_LEFT_ENDPT_3 — Left endpoint of y integration is not 
within the knot sequence. Integration occurs only from d to tSpline_Space_Dim – 1.

MATH_SPLINE_RIGHT_ENDPT_3 — Right endpoint of y integration is not 
within the knot sequence. Integration occurs only from c to tSpline_Space_Dim – 1.

Fatal Errors

MATH_KNOT_MULTIPLICITY — Multiplicity of the knots cannot exceed the 
order of the spline.

MATH_KNOT_NOT_INCREASING — Knots must be nondecreasing.
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FCNLSQ Function 
Computes a least-squares fit using user-supplied functions.

Usage

result = FCNLSQ(f, nbasis, xdata, fdata)

Input Parameters

f — Scalar string specifying the name of a user-supplied function that defines 
the subspace from which the least-squares fit is to be performed. The k-th basis 
function evaluated at x is f (k, x), where k = 1, 2, …, nbasis.

nbasis — Number of basis functions.

xdata — One-dimensional array containing the abscissas of the least-squares 
problem.

fdata — One-dimensional array containing the ordinates of the least-squares 
problem.

Returned Value 

result — A one-dimensional array containing the coefficients of the basis 
functions.

Input Keywords

Double — If present and nonzero, double precision is used.

Weights — Array of weights used in the least-squares fit.

Output Keywords

Intercept — Named variable into which the coefficient of a constant function 
used to augment the user-supplied basis functions in the least-squares fit is 
stored. Setting this keyword forces an intercept to be added to the model.

SSE — Named variable into which the error sum of squares is stored.
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Discussion

For a discussion of the principles relating to the implementation of FCNLSQ, 
refer to the discussion of FCNLSQ in the PV-WAVE: IMSL Mathematics 
Reference.

Function FCNLSQ computes a best least-squares approximation to given 
univariate data of the form

 

by M basis functions

 

(where M = nbasis). In particular, the default for this function returns the coeffi-
cients a which minimize 

where w = Weights, n = N_ELEMENTS (xdata), x = xdata, and f = fdata.

If optional argument Intcercept is chosen, then an intercept is placed in the 
model and the coefficients a, returned by FCNLSQ, minimize the error sum of 
squares as indicated below.

Example

In this example, the following function is fit:

1 + sinx + 7sin3x

This function is evaluated at 90 equally spaced points on the interval [0, 6]. 
Four basis functions, 1, sinx, sin2x, and sin3x, are used.

.RUN

; Define the basis functions.

- FUNCTION f, k, x

- IF (k EQ 1) THEN RETURN, 1. $

xi fi,( ){ }i 0=
n 1–

Fj{ }j 1=
M

wi fi aj 1– Fj xi( )

j 1=

M

∑–
 
 
 

2

i 0=

n 1–

∑

wi fi intercept– aj 1– Fj xi( )

M

∑–
 
 
 

2n 1–

∑
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- ELSE RETURN, SIN((k - 1) * x)

- END

% COMPILED module: F.

n = 90

xdata = 6 * FINDGEN(n)/(n - 1)

fdata = 1 + SIN(xdata) + 7 * SIN(3 * xdata)

nbasis = 4

; Generate the data.

coefs = FCNLSQ("f", nbasis, xdata, fdata)

; Compute the coefficients summing FCNLSQ.

PM, coefs, Format = ’(f10.5)’

; Print the results.

1.00000

 1.00000

 0.00000

 7.00000

Warning Errors

MATH_LINEAR_DEPENDENCE — Linear dependence of the basis functions 
exists. One or more components of coef are set to zero.

MATH_LINEAR_DEPENDENCE_CONST — Linear dependence of the constant 
function and basis functions exists. One or more components of coef are set to 
zero.

Fatal Errors

MATH_NEGATIVE_WEIGHTS_2 — All weights must be greater than or equal 
to zero.
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BSLSQ Function 
Computes a one- or two-dimensional, least-squares spline approximation.

Usage

result = BSLSQ(xdata, fdata, xspacedim)

result = BSLSQ(xdata, ydata, fdata, xspacedim, yspacedim) 

Input Parameters

If a one-dimensional B-spline is desired, then arguments xdata, fdata, and 
xspacedim are required. If a two-dimensional, tensor-product B-spline is 
desired, then arguments xdata, ydata, fdata, xspacedim, and yspacedim are 
required.

xdata — One-dimensional array containing the data points in the x-direction.

ydata — One-dimensional array containing the data points in the y-direction.

fdata — Array containing the values to be approximated. If a one-dimensional 
approximation is to be computed, then fdata is a one-dimensional array. If a 
two-dimensional approximation is to be computed, then fdata is a two-dimen-
sional array, where fdata (i, j) contains the value at (xdata (i), ydata(j)).

xspacedim — Linear dimension of the spline subspace for the x variable. It 
should be smaller than the number of data points in the x-direction and greater 
than or equal to the order of the spline in the x-direction (whose default value is 
4).

yspacedim — Linear dimension of the spline subspace for the y variable. It 
should be smaller than the number of data points in the y-direction and greater 
than or equal to the order of the spline in the y-direction (whose default value is 
4).

Returned Value

result — A structure containing all the information to determine the spline fit.

Input Keywords

Double — If present and nonzero, double precision is used.
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XOrder — Specifies the order of the spline in the x-direction.

Default: XOrder = 4, i.e., cubic splines

YOrder — Specifies the order of the spline in the y-direction. If a one-dimen-
sional spline is being computed, then YOrder has no effect on the computations. 

Default: YOrder = 4, i.e., cubic splines

XKnots — Specifies the array of knots in the x-direction to be used when com-
puting the definition of the spline. 

Default: knots are equally spaced in the x-direction

YKnots — Specifies the array of knots in the y-direction to be used when com-
puting the definition of the spline. 

Default: knots are equally spaced in the y-direction

XWeights — Array containing the weights to use in the x-direction.

Default: all weights equal to 1

YWeights — Array containing the weights to use in the y-direction. If a one-
dimensional spline is being computed, then YWeights has no effect on the 
computations. 

Default: all weights equal to 1

Optimize — If present and nonzero, optimizes the knot locations by attempting 
to minimize the least-squares error as a function of the knots. This keyword is 
only active if a one-dimensional spline is being computed.

Output Keywords

Sse — Specifies the named variable into which the weighted error sum of 
squares is stored.

Discussion

Function BSLSQ computes a least-squares approximation to weighted data 
returning either a one-dimensional B-spline or a two-dimensional, tensor-prod-
uct B-spline. The determination of whether to return a one- or two-dimensional 
spline is made based on the number of arguments passed to the function.
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One-dimensional, B-spline Least-squares Approximations

Make the following identifications:

n = N_ELEMENTS(xdata) 

x = xdata 

f = fdata

m = xspacedim 

k = XOrder 

For convenience, assume that the sequence x is increasing (although the func-
tion does not require this).

By default, k = 4 and the knot sequence selected equally distributes the knots 
through the distinct xi’s. In particular, the m + k knots are generated in 
[x0 , xn – 1 ] with k knots stacked at each of the extreme values. The interior 
knots are equally spaced in the interval.

Once knots t and weights w are determined (and assuming that keyword Opti-
mize is not set), then the function computes the spline least-squares fit to the 
data by minimizing over the linear coefficients aj, such that

where Bj, j = 0, . . ., m – 1, is a (B-spline) basis for the spline subspace.

The XOrder keyword allows the user to choose the order of the spline fit. The 
XKnots keyword allows user specification of knots. The one-dimensional func-
tionality of BSLSQ is based on the routine L2APPR by de Boor (1978, p. 255).

If option Optimize is chosen, the function attempts to find the best placement of 
knots that minimizes the least-squares error to the given data by a spline of 
order k with m coefficients. For this problem to make sense, it is necessary that 
m > k. Then, to find the minimum of the functional, use the following:

wi fi aj Bj xi( )
j 0=
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∑–
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∑

F a t,( ) wi fi ajBj k t, , xi( )
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The technique employed here uses the fact that for a fixed-knot sequence t the 
minimization in a is a linear least-squares problem that can be easily solved. 
Thus, the objective function F is a function of only t by setting the following:

G(t) = minF(a, t) 

A Gauss-Seidel (cyclic coordinate) method is then used to reduce the value of 
the new objective function G. In addition to this local method, there is a global 
heuristic built into the algorithm that is useful if the data arise from a smooth 
function. This heuristic is based on the routine NEWNOT of de Boor (1978, pp. 
184, 258–261).

The initial guess, tg, for the knot sequence is either provided by the user or is 
the default. This guess must be a valid knot sequence for splines of order k with

with tg nondecreasing and

tg
i < tg

i + k for i = 0, ..., m – 1. 

In regard to execution speed, this function can be several orders of magnitude 
slower than a simple least-squares fit.

The return value for this function is a structure containing all the information to 
determine the spline (stored in B-spline form) that is computed by this function.

In the figure below, two cubic splines are fit to SQRT( |x| ) . Both splines are 
cubics with the same xspacedim = 8. The first spline is computed with the 
default settings, while the second spline is computed by optimizing the knot 
locations using the Optimize keyword.

t0
g

… tk 1–
g

xi tm

g
… tm k 1–+

g
≤ ≤ ≤ ≤ ≤ ≤ i 1 … M, ,=
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Figure 3-10  Two fits to noisy SQRT( |x| ).

Two-dimensional, B-spline Least-squares Approximations

If a two-dimensional, tensor-product B-spline is desired, the BSLSQ function 
computes a tensor-product spline, least-squares approximation to weighted, ten-
sor-product data. The input for this function consists of data vectors to specify 
the tensor-product grid for the data, two vectors with the weights (optional, the 
default is 1), the values of the surface on the grid, and the specification for the 
tensor-product spline (optional, a default is chosen). The grid is specified by the 
two vectors x = xdata and y = ydata of length n = N_ELEMENTS(xdata) and 
m= N_ELEMENTS(ydata), respectively. A two-dimensional array
f = fdata contains the data values to be fit. The two vectors wx = XWeights and 
wy = YWeights  contain the weights for the weighted, least-squares problem. The 
information for the approximating tensor-product spline can be provided using 
keywords XOrder, YOrder, XKnots, and YKnots. This information is contained 
in kx = XOrder, tx = XKnots, and n = xspacedim for the spline in the first vari-
able, and in ky = YOrder, ty = YKnots, and m = yspacedim for the spline in the 
second variable.

This function computes coefficients for the tensor-product spline by solving the 
normal equations in tensor-product form as discussed in de Boor (1978, Chapter 
17). For more information, see the paper by Grosse (1980).

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2
Equally spaced:
Optimized:



BSLSQ Function  149

As the computation proceeds, coefficients c are obtained minimizing

where the function Bkl is the tensor-product of two B-splines of order kx and ky:

The spline 

and its partial derivatives can be evaluated using function SPVALUE 
(page 132).

The return value for this function is a structure containing all the information to 
determine the spline that is computed by this function. For example, the follow-
ing code sequence evaluates this spline (stored in the structure sp) at (x, y) and 
returns the value in v:

v = SPVALUE(x, y, sp)

Example 1

This example fits data generated from a trigonometric polynomial

1 + sinx + 7sin3x + ε

where ε is a random uniform deviate over the range [–1, 1]. The data are 
obtained by evaluating this function at 90 equally spaced points on the interval 
[0, 6]. This data is fit with a cubic spline with 12 degrees of freedom (eight 
equally spaced interior knots). The computed fit and original data are then plot-
ted as follows:

n = 90

x = 6 * FINDGEN(n)/(n - 1)

f = 1 + SIN(x) + 7 * SIN(3 * x) + $

(1 - 2 * RANDOM(n))

wx i( )wy j( ) ckl Bkl xi yi,( )

l 0=

M 1–

∑
k 0=

N 1–

∑ fij–

2

j 0=

m 1–

∑
i 0=

n 1–

∑ 
 
 

Bkl x y,( ) Bk kx tx, , x( )Bl ky ty, , y( )=

cklBkl
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∑
N 1–

∑
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; Set up the data.

sp = BSLSQ(x, f, 8)

; Compute the spline fit.

speval = SPVALUE(x, sp)

; Evaluate the computed spline at the original data abscissa.

PLOT, x, speval

; Plot the results.

OPLOT, x, f, Psym = 6

Figure 3-11  One-dimensional least-squares B-spline fit.

Example 2

This example fits noisy data that arises from the function exsin (x + y) + ε, 
where ε is a random uniform deviate in the range (–1, 1), on the rectangle [0, 3] 
x [0, 5]. This function is sampled on a 50 x 25 grid and the original data and 
the evaluations of the computed spline are plotted.

nx = 50

ny = 25

; Generate noisy data on a 50 x 25 grid.

x = 3 * FINDGEN(nx)/(nx - 1)

y = 5 * FINDGEN(ny)/(ny - 1)

f = FLTARR(nx, ny)

FOR i = 0, nx - 1 DO f(i, *) = EXP(x(i)) * $

SIN(x(i) + y) + 2 * RANDOM(ny) - 1

0 2 4 6
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sp = BSLSQ(x, y, f, 5, 7)

; Call BSLSQ to compute the least-squares fit. Notice that 
; xspacedim = 5 and yspacedim = 7.

speval = SPVALUE(x, y, sp)

; Evaluate the fit on the original grid.

!P.Multi = [0, 1, 2]

WINDOW, XSize = 500, YSize = 800

; Plot the original data and the fit in the same window.

SURFACE, f, x, y, Ax = 45, $

XTitle = ’X’, YTitle = ’Y’

SURFACE, speval, x, y, Ax = 45, $

XTitle = ’X’, YTitle = ’Y’
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Figure 3-12  Two-dimensional B-spline least-squares fit to noisy data.

Warning Errors 

MATH_ILL_COND_LSQ_PROB — Least-squares matrix is ill-conditioned. 
Solution might not be accurate. 
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MATH_SPLINE_LOW_ACCURACY — There may be less than one digit of 
accuracy in the least-squares fit. Try using higher precision if possible.

MATH_OPT_KNOTS_STACKED_1 — Knots found to be optimal are stacked 
more than Order. This indicates that fewer knots will produce the same error 
sum of squares. Knots have been separated slightly.

Fatal Errors

MATH_KNOT_MULTIPLICITY — Multiplicity of the knots cannot exceed the 
order of the spline.

MATH_KNOT_NOT_INCREASING — Knots must be nondecreasing.

MATH_SPLINE_LRGST_ELEMNT — Data arrays xdata and ydata must sat-
isfy datai ≤ tSpline_Space_Dim, for i = 1, …, num_data.

MATH_SPLINE_SMLST_ELEMNT — Data arrays xdata and ydata must sat-
isfy datai ≥ tOrder – 1, for i = 1, …, num_data.

MATH_NEGATIVE_WEIGHTS — All weights must be greater than or equal to 
zero.

MATH_DATA_DECREASING — The xdata values must be nondecreasing.

MATH_XDATA_TOO_LARGE — Array xdata must satisfy 
xdatai ≤ tndata, for i = 1, …, ndata.

MATH_XDATA_TOO_SMALL — Array xdata must satisfy 
xdatai ≥ tOrder – 1, for i = 1, …, ndata.

MATH_OPT_KNOTS_STACKED_2 — Knots found to be optimal are stacked 
more than Order. This indicates fewer knots will produce the same error sum of 
squares. 
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CONLSQ Function 
Computes a least-squares constrained spline approximation.

Usage

result = CONLSQ(xdata, fdata, spacedim, constraints [, nhard])

Input Parameters

xdata — One-dimensional array containing the abscissas of the least-squares 
problem.

fdata — One-dimensional array containing the ordinates of the least-squares 
problem.

spacedim — Linear dimension of the spline subspace. It should be smaller than 
the number of data points and greater than or equal to the order of the spline 
(whose default value is 4).

constraints — Array of structures containing the abscissas at which the fit is to 
be constrained, the derivative of the spline that is to be constrained, the type of 
constraints, and any lower or upper limits. A description of the structure fields 
is in the table below.

NOTE  To constrain the integral of the spline over the closed interval (c, d), set 
constraints (i).XVAL = c and constraints (i + 1).XVAL = d. For consistency, 
insist that constraints (i).TYPE = constraints (i + 1).TYPE = 5, 6, 7, or 8 and 
c ≤ d.

For more information on the allowed values of constraints.TYPE, refer to the 
description of CONLSQ. 

Tag Description

XVAL Point at which fit is constrained (float)

DER Derivative value of the spline to be constrained (long int)
TYPE Types of the general constraints (long int)

BL Lower limit of the general constraints (float)
BU Upper limit of the general constraints (float)
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constraints(i).TYPE i-th constraint 

1

2

3

4

5

6

7

8

20 periodic end conditions

99 disregard this constraint

In order to have two-point constraints, 
constraints(i).TYPE = constraints(i + 1).TYPE  is needed.

constraints(i).TYPE i-th constraint 

9

10

11

12

nhard — (Optional) Number of entries of constraints involved in the “hard” 
constraints. Note that 0 ≤ nhard ≤ (SIZE (constraints)) (1). The default, 
nhard = 0, always results in a fit, while setting nhard = (SIZE (constraints)) (1) 
forces all constraints to be met. The “hard” constraints must be met or the func-
tion signals fail. The “soft” constraints need not be satisfied, but there is an 
attempt to satisfy the “soft” constraints. The constraints must be listed in terms 
of priority with the most important constraints first. Thus, all “hard” constraints 
must precede “soft” constraints. If infeasibility is detected among the “soft” 
constraints, the function satisfies, in order, as many of the “soft” constraints as 
possible.

Default: nhard = 0
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Returned Value

result — A structure that represents the spline fit.

Input Keywords

Double — If present and nonzero, double precision is used.

Order — Specifies the order of the spline.

Default: Order = 4, i.e., cubic splines

Knots — Specifies the array of knots to be used when computing the spline.

Default: knots are equally spaced

Weights — Array containing the weights to be used. 

Default: all weights equal 1

Discussion

Function CONLSQ produces a constrained, weighted, least-squares fit to data 
from a spline subspace. Constraints involving one-point, two-points, or inte-
grals over an interval are allowed. 

The types of constraints supported by the functions are of four types:

An interval, Ip, (which may be a point, a finite interval, or a semi-infinite inter-
val) is associated with each of these constraints.

The input for this function consists of the data set (xi, fi) for i = 1, ..., N (where 
N = N_ELEMENTS(xdata)); that is, the data which is to be fit and the dimen-
sion of the spline space from which a fit is to be computed, spacedim. The 
constraints argument is an array of structures that contains the abscissas of the 
points involved in specifying the constraints, as well as information relating the 
type of constraints and the constraint interval. The optional argument nhard 

or f t( )
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yp 1+∫ dt=

or periodic end conditions=

or f
jp( )

yp( ) f
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allows users of this code to specify which constraints must be met and which 
constraints can be removed in order to compute a fit. The algorithm tries to sat-
isfy all the constraints, but if the constraints are inconsistent, then it drops 
constraints in the reverse order specified, until either a consistent set of con-
straints is found or the “hard” constraints are determined to be inconsistent (the 
“hard” constraints are those involving constraints(0), ..., constraints(nhard – 
1)). 

Let nf denote the number of feasible constraints as described above. The func-
tion solved the problem

subject to

This linearly constrained least-squares problem is treated as a quadratic program 
and is solved by invoking function QUADPROG (page 335).

The choice of weights depends on the data uncertainty in the problem. In some 
cases, there is a natural choice for the weights based on the estimates of errors 
in the data points.

Determining feasibility of linear constraints is a numerically sensitive task. If 
difficulties are encountered, a quick fix is to widen the constraint intervals Ip.

Example

This example is a simple application of CONLSQ. Data from the function x/2 + 
sin(x/2) contaminated with random noise is generated and then fit with cubic 
splines. The function is increasing so it is hoped that the least-squares fit also is 
increasing. This is not the case for the unconstrained least-squares fit generated 
by function BSLSQ (page 144). The derivative is then forced to be greater than 
zero at 15 equally spaced points and CONLSQ is called. The resulting curve is 
monotone.

RANDOMOPT, Set = 234579

; Set the random seed.

ndata = 15;

fi ajBj xi( )

m

∑–

2

wi

n

∑

Ep ajBj

m

∑ Ip p∈ 1 … nf, ,=
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spacedim = 8;

; Generate the data to be fit.

x = 10 * FINDGEN(ndata)/(ndata - 1)

y = .5 * (x) + SIN(.5 * (x)) + RANDOM(ndata) - .5

sp1 = BSLSQ(x, y, spacedim)

; Compute the unconstrained least-squares fit.

nconstraints = 15

; Define the constraints to be used by CONLSQ.

constraints = REPLICATE({constraint, $

XVAL:0.0, DER:0L, TYPE:0L, BL:0.0, $

BU:0.0}, nconstraints)

; Define an array of constraint structures. Each element of the
; array contains one structure that defines a constraint.

constraints.XVAL = 10*FINDGEN(nconstraints)/(nconstraints-1)

; Put a constant at 15 equally spaced points.

FOR i = 0, nconstraints - 1 DO BEGIN &$

constraints(i).DER  = 1 &$

constraints(i).TYPE = 3 &$

constraints(i).BL   = 0. &$

ENDFOR

; Define the constraints to force the second derivative to be greater
; than zero at the 15 equally spaced points.

sp2 = CONLSQ(x, y, spacedim, constraints)

; Call CONLSQ.

nplot = 100

xplot = 10 * FINDGEN(nplot)/(nplot - 1)

yplot1 = SPVALUE(xplot, sp1)

yplot2 = SPVALUE(xplot, sp2)

PLOT, xplot, yplot1, Linestyle = 2

; Plot the results.

OPLOT, xplot, yplot2

OPLOT, x, y, Psym = 6

XYOUTS, 1, 4.5, ’CONLSQ’, Charsize = 2

XYOUTS, 1, 4, ’BSLSQ’, Charsize = 2

OPLOT, [3.6, 4.6], [4.6, 4.6]

OPLOT, [3.6, 4.6], [4.1, 4.1], Linestyle = 2
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Figure 3-13  Monotonic B-spline fit to noisy data.

CSSMOOTH Function 
Computes a smooth cubic spline approximation to noisy data by using cross-
validation to estimate the smoothing parameter or by directly choosing the 
smoothing parameter.

Usage

result = CSSMOOTH(xdata, fdata)

Input Parameters

xdata — One-dimensional array containing the abscissas of the problem.

fdata — One-dimensional array containing the ordinates of the problem.

Returned Value

result — The structure that represents the cubic spline.

Input Keywords

Double — If present and nonzero, double precision is used.
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Weights — Array containing the weights to be used in the problem.

Default: all weights are equal to 1

Smpar — Specifies the real, scalar smoothing parameter explicitly. See Discus-
sion below for more details.

Discussion

Function CSSMOOTH is designed to produce a C2 cubic spline approximation 
to a data set in which the function values are noisy. This spline is called a 
smoothing spline.

Consider first the situation when the optional keyword Smpar is selected. Then, 
a natural cubic spline with knots at all the data abscissas x = xdata is computed, 
but it does not interpolate the data 
(xi, fi). The smoothing spline s is the unique C2 function which minimizes

subject to the constraint

where w = Weights, σ = Smpar is the smoothing parameter, and n = 
N_ELEMENTS(xdata).

Recommended values for σ depend on the weights w. If an estimate for the 
standard deviation of the error in the value fi is available, then wi should be set 
to the inverse of this value. The smoothing parameter σ should be chosen in the 
confidence interval corresponding to the left side of the above inequality; that is 

Function CSSMOOTH is based on an algorithm of Reinsch (1967). This algo-
rithm also is discussed in de Boor (1978, pp. 235–243).

The default for this function chooses the smoothing parameter σ by a statistical 
technique called cross-validation. For more information on this topic, refer to 
Craven and Wahba (1979).

s" x( )2 xd
a

b

∫

s xi( ) fi–( )wi
2

i 0=

n 1–

∑ σ≤

n 2n– σ n 2n+≤ ≤( )
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The return value for this function is a structure containing all the information to 
determine the spline (stored as a piecewise polynomial) that is computed by this 
procedure.

Example

In this example, function values are contaminated by adding a small “random” 
amount to the correct values. Function CSSMOOTH is used to approximate the 
original, uncontaminated data.

n = 25

x = 6 * FINDGEN(n)/(n - 1)

f = SIN(x) + .5 * (RANDOM(n) - .5)

; Generate the data.

pp = CSSMOOTH(x, f)

; Compute the fit.

x2 = 6 * FINDGEN(100)/99

; Evaluate the computed fit at 100 values in [0, 6].

ppeval = SPVALUE(x2, pp)

PLOT, x2, ppeval

; Plot the results.

OPLOT, x, f, Psym = 6, Symsize = .5

Figure 3-14  Smoothing spline.
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Warning Errors

MATH_MAX_ITERATIONS_REACHED — Maximum number of iterations has 
been reached. The best approximation is returned.

Fatal Errors

MATH_DUPLICATE_XDATA_VALUES — The xdata values must be distinct.

MATH_NEGATIVE_WEIGHTS — All weights must be greater than or equal to 
zero.

WgSplineTool Procedure 
Graphical User Interface (GUI) that computes a one-dimensional, least-squares 
spline fit to (possibly noisy) data.

Usage

WgSplineTool [, fit, parent, shell]

Input Parameters

parent — Widget handle of a parent widget. If supplied, it will be used as the 
parent shell for the tool.

Output Parameters

fit — Structure containing the computed spline. See the introduction of this 
chapter for a complete description of the spline structure.

shell — Used to pass the shell widget handle for the tool back to the caller.

Input Keywords

XData — One-dimensional array containing the abscissas of the data to be fit. 
If XData is specified, then YData must also be specified.

YData — One-dimensional array containing the ordinates of the data to be fit.

XSize — Width, in pixels, of the draw widget used to display the fit. Keyword 
XSize must be between 100 and 800.

Default: XSize = 600
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YSize — Height, in pixels, of the draw widget used to display the fit. Keyword 
YSize must be between 100 and 800.

Default: YSize = 600

Demo_Data — If present and nonzero, sets path to the PV-WAVE example data 
directory for importing data. Otherwise, WwFileSelection prompts for input 
from the same directory from which WgSplineTool was invoked.

Foreground — Specifies the default foreground color name.

Background — Specifies the default background color name.

Font — Specifies the name of the default font used for text.

Position — Specifies the position of the upper-left corner of the main window 
on the screen.

Title — String specifying a title for the shell. The default is “Constrained Spline 
Tool.”

Discussion

Procedure WgSplineTool is designed to help compute a least-squares spline fit 
to (possibly noisy) data. The WgSplineTool procedure computes the fit using 
function CONLSQ (page 154). The default use of WgSplineTool does not 
require any arguments or keywords and can be used as follows:

WgSplineTool

There are two ways to supply data to WgSplineTool. First, if the data is con-
tained in variables, for example, x and y, invoke WgSplineTool with the 
following call:

WgSplineTool, XData = x, YData = y

The variables x and y should be one-dimensional arrays of equal length.

The YData keyword can be used without the XData keyword. in this case, it is 
assumed that the associated x values are monotonically increasing from 0. The 
call would be as follows:

WgSplineTool, YData = y

The variable y should be a one-dimensional array.

The second method to import data into the application is through an external 
ASCII file, along with the button labeled Open. The structure of the file is as 
follows:
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•  The first line contains the total number of (x, y) pairs.

•  Each line after the first line should contain one (x, y) pair.

For example, the following six lines could be put into a file for use by 
WgSplineTool:

5

0.0454    3.43245

0.1243    4.45645

0.2454    1.43553

1.2311    1.76543

2.4325    9.53234

Once the data has been imported to the application, the data is automatically fit-
ted with the default choice of knots. After this is accomplished, you have the 
ability to add the order of the fit, the spline space dimension, and the place-
ment of the knots. To adjust the placement of the knots, simply use the mouse 
to “click and drag” the knots on the plot (the knot abscissae are the triangles 
that appear near the bottom of the plot). WgSplineTool returns the last com-
puted fit in the argument fit. 

Use the Save Spline button to save any intermediate fits. After saving the fit, 
you can restore the spline at a later time into a variable using the following 
command:

RESTORE, ’filename’

A description of each element of the top-level widget follows. The numbers 
correspond to the labels in Figure 3-15:

1. Plotting Options:
Once a fit has been computed, the following plots can be viewed:

• The computed fit.
• The first derivative of the computed fit.

• The second derivative of the computed fit.

2. 1st Derivative Constraints:
Once a fit has been computed, the following choices for global constraints 
on the first derivative of the computed fit can be enforced:

• Does not enforce any constraints.
• Forces the fit to be nondecreasing, i.e., the first derivative is non-nega-

tive throughout the domain of the data.
• Forces the fit to be nonincreasing, i.e., the first derivative is nonposi-

tive throughout the domain of the data.
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3. 2nd Derivative Constraints:
Once a fit has been computed, the following choices for global constraints 
on the second derivative of the computed fit can be enforced:
• Does not enforce any constraints.

• Forces the fit to be convex, i.e., the second derivative is non-negative 
throughout the domain of the data.

• Forces the fit to be concave, i.e., the second derivative is nonpositive 
throughout the domain of the data. 

4. Spline Parameters:
Once a fit has been computed, the following spline parameters can be 
changed using sliders:

• Spline Order. Note: The order of the spline is one more than the degree 
of the fit.

• Spline Space Dimension. Changing this value increases the number of 
knots used in computing the fit.

5. Plot Window:
Displays a plot of the fit in this draw widget. Using the mouse, the knots 
can be moved from within this window. 

6. Mouse Coordinates:
As the mouse is moved over the plot, reflects the mouse coordinates. The 
coordinates are computed in data coordinates.

7. Default Knots:
Fits the current data with a default set of knots.

8. Open:
Imports data from an external ASCII file.

9. Save Spline:
Allows saving of computed splines in save files.

10. Dismiss:
Terminates this program.

11. Help:
Opens the online help file for viewing.
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Figure 3-15  Spline fitting widget.
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SMOOTHDATA1D Function 
Smooths one-dimensional data by error detection.

Usage

result = SMOOTHDATA1D(x, y)

Input Parameters

x — One-dimensional array containing the abscissas of the data points. 

y — One-dimensional array containing the ordinates of the data points. 

Returned Value

result — One-dimensional array containing the smoothed data.

Input Keywords

Double — If present and nonzero, double precision is used.

Itmax — The maximum number of iterations allowed. 

Default: Itmax = 500

Sc — The stopping criterion.  Sc should be greater than or equal to zero.

Default: Sc = 0.0

Distance — Proportion of the distance the ordinate in error is moved to its 
interpolating curve. It must be in the range 0.0 to 1.0. 

Default: Distance = 1.0

Algorithm

The function SMOOTHDATA1D is designed to smooth a data set that is mildly 
contaminated with isolated errors. In general, the routine will not work well if 
more than 25% of the data points are in error. The routine SMOOTHDATA1D 
is based on an algorithm of Guerra and Tapia (1974).

Setting N_ELEMENTS(x) = n, Y = f, result = s and X= x, the algorithm pro-
ceeds as follows. Although the user need not an ordered x sequence, we will 
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assume that x is increasing for simplicity. The algorithm first sorts the x values 
into an increasing sequence and then continues. A cubic spline interpolant is 
computed for each of the 6-point data sets (initially setting s = f )

(xj, sj) j = i – 3, ... , i + 3  j ≠ i,

where i = 4, ... , n – 3. For each i the interpolant, which we will call Si, is com-
pared with the current value of si, and a ‘point energy’ is computed as

pei = Si(xi) – si

Setting sc = Sc, the algorithm terminates either if Itmax iterations have taken 
place or if

If the above inequality is violated for any i, then we update the i-th element of s 
by setting si = si + d(pei), where d = Distance. Note that neither the first three 
nor the last three data points are changed. Thus, if these points are inaccurate, 
care must be taken to interpret the results.

The choice of the parameters Distance, Sc and Itmax are crucial to the success-
ful usage of this subroutine. If the user has specific information about the extent 
of the contamination, then he should choose the parameters as follows: Distance 
= 1, Sc = 0 and Itmax to be the number of data points in error. On the other 
hand, if no such specific information is available, then choose Distance = .5, 
Itmax ≤ 2n, and

In any case, we would encourage the user to experiment with these values.

Example

We take 91 uniform samples from the function 5 + (5 + t2 sin t)/t on the interval 
[1, 10]. Then, we contaminate 10 of the samples and try to recover the original 
function values.

FUNCTION F, xdata

   RETURN, (xdata*xdata*SIN(xdata) + 5)/xdata + 5

pei sc
xi 3+ xi 3––( )

6
---------------------------------        i≤ 4 … n 3–, ,=

Sc 0.5
maxs mins–

xn x1–( )
-------------------------------=
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END

isub  =  [5, 16, 25, 33, 41, 48, 55, 61, 74, 82]

rnoise  =  [2.5, -3.0, -2.0, 2.5, 3.0, -2.0, -2.5, 2.0, -2.0, 
3.0]

; Example 1: No specific information available.

dis  =  0.5

sc  =  0.56

itmax  =  182

   
; Set values for xdata and fdata.     

xdata  =  1 + 0.1*FINDGEN(91)

fdata  =  f(xdata)

; Contaminate the data.

fdata(isub)  =  fdata(isub) + rnoise

; Smooth the data.

sdata  = SMOOTHDATA1D(xdata, fdata, Itmax = itmax, $
Distance = dis, Sc = sc)

; Output the results.

PM, [[f(xdata(isub))], [fdata(isub)], [sdata(isub)]], $

      Title  =  ’        F(X)    F(X) + noise     sdata’      

        F(X)    F(X) + noise     sdata

      9.82958      12.3296      9.87030

      8.26338      5.26338      8.21537

      5.20083      3.20083      5.16823

      2.22328      4.72328      2.26399

      1.25874      4.25874      1.30825

      3.16738      1.16738      3.13830

      7.16751      4.66751      7.13076

      10.8799      12.8799      10.9092

      12.7739      10.7739      12.7075

      7.59407      10.5941      7.63885

; Example 2: Specific information available.

dis  =  1.0

sc  =  0.0
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itmax  =  10.0

; A warning message is produce because the maximum number 

; of iterations is reached.

sdata  =  SMOOTHDATA1D(xdata, fdata, Itmax = itmax, $

                       Distance = dis, Sc = sc)

% SMOOTHDATA1D: Warning: MATH_ITMAX_EXCEEDED

; Maximum number of iterations limit "ITMAX" = 10 exceeded.  The best 

; answer found is returned.

; Output the results.

PM, [[f(xdata(isub))], [fdata(isub)], [sdata(isub)]], $

      Title  =  ’        F(X)    F(X) + noise     sdata’      

        F(X)    F(X) + noise     sdata

      9.82958      12.3296      9.83127

      8.26338      5.26338      8.26223

      5.20083      3.20083      5.19946

      2.22328      4.72328      2.22495

      1.25874      4.25874      1.26142

      3.16738      1.16738      3.16958

      7.16751      4.66751      7.16986

      10.8799      12.8799      10.8779

      12.7739      10.7739      12.7699

      7.59407      10.5941      7.59194
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SCAT2DINTERP Function 
Computes a smooth bivariate interpolant to scattered data that is locally a quin-
tic polynomial in two variables.

Usage

result = SCAT2DINTERP(xydata, fdata, xout, yout)

Input Parameters

xydata — Two-dimensional array containing the data points for the interpola-
tion problem. Argument xydata is dimensioned (2, N_ELEMENTS (fdata)). The 
i-th data point (xi, yi) is stored in xydata (0, i) = xi and xydata (1, i) = yi.

fdata — One-dimensional array containing the values to be interpolated.

xout — One-dimensional array specifying the x values for the output grid. It 
must be strictly increasing.

yout — One-dimensional array specifying the y values for the output grid. It 
must be strictly increasing.

Returned Value

result — A two-dimensional array containing the grid of values of the 
interpolant. 

Input Keywords

Double — If present and nonzero, double precision is used. 

Discussion

Function SCAT2DINTERP computes a C1 interpolant to scattered data in the 
plane. Given the data points (in R3):

where n = N_ELEMENTS(xydata) / 2, SCAT2DINTERP returns the values of 
the interpolant s on the user-specified grid. The computation of s is as follows:

First, the Delaunay triangulation of the points

xi yi fi, ,( ){ }i 0=
n 1–
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is computed. On each triangle T in this triangulation, s has the following form:

Thus, s is a bivariate quintic polynomial on each triangle of the triangulation. In 
addition,

and s is continuously differentiable across the boundaries of neighboring trian-
gles. These conditions do not exhaust the freedom implied by the above 
representation. This additional freedom is exploited in an attempt to produce an 
interpolant that is faithful to the global shape properties implied by the data. For 
more information on this procedure, refer to the article by Akima (1978). The 
output grid is specified by the two real vectors, xout and yout, that represent the 
first (second) coordinates of the grid.

Example

In this example, SCAT2DINTERP is used to fit a surface to randomly scattered 
data. The resulting surface and the original data points are then plotted.

RANDOMOPT, Set = 12345

ndata = 15

xydata = FLTARR(2, ndata)

xydata(*) = RANDOM(2 * ndata)

fdata = RANDOM(ndata)

x = xydata(0, *)

y = xydata(1, *)

ngrid = 20

xout = FINDGEN(ngrid)/(ngrid - 1)

yout = FINDGEN(ngrid)/(ngrid - 1)

; Define the grid used to evaluate the computed surface.

surf  = $

SCAT2DINTERP(xydata, fdata, xout, yout)

; Call SCAT2DINTERP.

xi yi,( ){ }i 0=
n 1–

s x y,( ) cmn
T

x
m

y
n

m n+ 5≤
∑= x y,( ) T∈∀

s xi yi,( ) fi= for i 0 … n 1–, ,=
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SURFACE, surf, xout, yout, /Save, $

Ax = 45, Charsize = 1.5

; Plot the computed surface.

PLOTS,  x, y, fdata, /T3d, $

Symsize = 2, Psym = 2

; Plot the original data points.

Figure 3-16  Results of fit to scattered data.

Fatal Errors

MATH_DUPLICATE_XYDATA_VALUES — Two-dimensional data values must 
be distinct.

MATH_XOUT_NOT_STRICTLY_INCRSING — Vector xout must be strictly 
increasing.

MATH_YOUT_NOT_STRICTLY_INCRSING — Vector yout must be strictly 
increasing.
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RADBF Function 
Computes an approximation to scattered data in Rn for n ≥ 2 using radial-basis 
functions.

Usage

result = RADBF(abscissa, fdata, num_centers)

Input Parameters

abscissa — Two-dimensional array containing the abscissas of the data points. 
Parameter abscissa (i, j) is the abscissa value of the j-th data point in the i-th 
dimension.

fdata — One-dimensional array containing the ordinates for the problem.

num_centers — Number of centers to be used when computing the radial-basis 
fit. Parameter num_centers should be less than or equal to N_ELEMENTS 
(fdata).

Returned Value

result — A structure that represents the radial-basis fit.

Input Keywords

Centers — User-supplied centers. See Discussion below for details.

Double — If present and nonzero, double precision is used. 

Ratio_Centers — Desired ratio of centers placed on an evenly spaced grid to 
the total number of centers. There is a condition: The same number of centers 
placed on a grid for each dimension must be equal. Thus, the actual number of 
centers placed on a grid is usually less than Ratio_Centers * num_centers, but is 
never more than Ratio_Centers * num_centers. The remaining centers are ran-
domly chosen from the set of abscissa given in abscissa.

Default: Ratio_Centers = 0.5

Random_Seed — Value of the random seed used when determining the ran-
dom subset of abscissa to use as centers. By changing the value of seed on 
different calls to RADBF, with the same data set, a different set of random cen-
ters are chosen. Setting Random_Seed to zero forces the random number seed to 
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be based on the system clock, so possibly, a different set of centers is chosen 
each time the program is executed.

Default: Random_Seed = 234579

Basis — Character string specifying a user-supplied function to compute the 
values of the radial functions. The form of the input function is ϕ (r).

Default: the Hardy multiquadratic

Delta — Delta used  in the default  basis  function, φ (r) = SQRT(r2 + δ2). 

Default: Delta = 1

Weights — Requires the user to provide the weights.

Default: all weights equal 1

Discussion

Function RADBF computes a least-squares fit to scattered data in Rd. More pre-
cisely, let n = N_ELEMENTS (fdata), x = abscissa, f = fdata, and 
d = N_ELEMENTS (abscissa (0, *)). Then,

This function computes a function F which approximates the above data in the 
sense that it minimizes the sum-of-squares error

where w = Weights.

The functional form of F is, of course, restricted as follows:

x0 … xn 1–, , IRd∈

f0 … fn 1–, , IR1∈

wi F xi( ) fi–( )2

n 1–

∑

F x( ): α j x cj– 2 δ2+( )

k 1–

∑ djφ x cj–( )

k 1–

∑= =
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The function φ is called the radial function. It maps R1  into R1. It needs to be 
defined only for the nonnegative reals. For the purpose of this routine, the user 
supplied a function

.

Note that the value of delta is defaulted to 1. It can be set by the user by using 
keyword Delta.

The default-basis function is called the Hardy multiquadric and is defined as 

. 

A key feature of this routine is the user’s control over the selection of the basis 
function.

In order to obtain the default selection of centers, first compute the number of 
centers that will be on a grid and the number that will be on a random subset of 
the abscissa. Next, compute those centers on a grid. Finally, a random subset of 
abscissa is obtained. This determines where the centers are placed. The selec-
tion of centers is discussed in more detail below. 

First, the computed grid is restricted to have the same number of grid values in 
each of the “dimension” directions. Then, the number of centers placed on a 
grid, num_gridded, is computed as follows:

Note that there are β grid values in each of the “dimension” directions. Then, 

num_random = (num_centers) – (num_gridded)

How many centers are placed on a grid and how many are placed on a random 
subset of the abscissa is now known. The gridded centers are computed such 
that they are equally spaced in each of the “dimension” directions. The last 
problem is to compute a random subset, without replacement, of the abscissa. 
The selection is based on a random seed. The default seed is 234579. The user 

φ r( ) r2 δ2+( )=

φ r( ) r2 δ2+( )=

α Ratio_Centers( ) num_centers( )=

β α1 dimension⁄=

num_gridded βdimension=
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can change this using optional argument Random_Seed. Once the subset is com-
puted, the abscissa as centers is used.

Since the selection of good centers for a specific problem is an unsolved prob-
lem at this time, ultimate flexibility is given to the user; that is, the user can 
select centers using keyword Centers. As a rule of thumb, the centers should be 
interspersed with the abscissa.

The return value for this function is a pointer to the structure containing all the 
information necessary to evaluate the fit. This pointer is then passed to function 
RADBE (page 184) to produce values of the fitted function.

Example 1: Fitting Noisy Data using the Default Radial 
Function

In this example, RADBF is used to fit noisy data. Four plots are generated 
using different values for num_centers. The plots generated by running this 
example are included after the code. Note that the triangles represent the place-
ment of the centers.

PRO radbf_ex1

!P.Multi = [0, 2, 2]

ndata = 10

noise_size = .05

xydata = DBLARR(1, ndata)

fdata = DBLARR(ndata)

; Set up parameters.

RANDOMOPT, Set = 234579

; Set the random number seed.

noise = 1 - 2 * RANDOM(ndata, /Double)

; Generate the noisy data.

xydata(0, *) = 15 * RANDOM(ndata)

fdata = REFORM(COS(xydata(0, *)) + $
noise_size * noise, ndata)

FOR i = 0, 3 DO BEGIN 

num_centers = ndata/3 + i

; Loop on different values of num_centers.

radial_struct = $
RADBF(xydata, fdata, num_centers)

; Compute the fit.

a = DBLARR(1, 100)

a(0, *) = 15 * FINDGEN(100)/99.
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fit = RADBE(a, radial_struct) 

; Evaluate fit.

title = ’Fit with NUM_CENTERS = ’ + $

STRCOMPRESS(num_centers, /Remove_All)

PLOT, xydata(0, *), fdata, Title = title, $ 
Psym = 6, Yrange = [-1.25, 1.25]

; Plot results.

OPLOT, a(0, *), fit

; Plot the original data as squares.

OPLOT, radial_struct.CENTERS, $
MAKE_ARRAY(num_centers, Value=-1.25), Psym = 5

; Plot the x-values of the centers as triangles.

END

END

Figure 3-17  Fits using differential values for num_centers.
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Example 2: Fitting Noisy Data with a User-supplied Radial 
Function

This example fits the same data as the first example, but the user supplies the 
radial function and sets Ratio_Centers to zero. The radial function used in this 
example is φ (r) = ln (1 + r2). Four plots are generated using different values for 
num_centers. The plots generated by running this example are included after the 
code. Note that the triangles represent the placement of the centers.

FUNCTION user_fcn, distance

; Define the radial function.

RETURN, ALOG(1 + distance^2)

END

PRO radbf_ex2

; Set up parameters.

!P.Multi = [0, 2, 2]

ndata = 10

noise_size = .05

xydata = DBLARR(1, ndata)

fdata = DBLARR(ndata)

RANDOMOPT, Set = 234579

; Set the random number seed.

noise = 1 - 2 * RANDOM(ndata, /Double)

; Generate the noisy data.

xydata(0, *) = 15 * RANDOM(ndata)

fdata = REFORM(COS(xydata(0,*)) + noise_size * noise, ndata)

FOR i = 0, 3 DO BEGIN 

; Loop on different values of num_centers.

num_centers = ndata/3 + i

radial_struct = RADBF(xydata, fdata, $
num_centers, Ratio_Centers = 0, $
Basis = ’user_fcn’)

; Compute the fit.

a = DBLARR(1, 100)

a(0, *) = 15 * FINDGEN(100)/99.

fit = RADBE(a, radial_struct) 

; Evaluate fit.

title = ’Fit with NUM_CENTERS = ’ + $
STRCOMPRESS(num_centers, /Remove_All)
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PLOT, xydata(0,*), fdata, Title = title, $
Psym = 6, Yrange = [-1.25, 1.25]

; Plot results.

OPLOT, a(0, *), fit

OPLOT, radial_struct.CENTERS, $
MAKE_ARRAY(num_centers,Value = -1.25),$
Psym = 5

END

END

Figure 3-18  Fit using a user-defined radial function.
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Example 3: Fitting a Surface to Three-dimensional 
Scattered Data

This example fits a surface to scattered data. The scattered data is generated 
using the function f (x, y) = exp (ln (y + 1) sin (x)). The plots generated by run-
ning this example are included after the code.

FUNCTION f, x1, x2

; This function is used to generate the scattered data function values.

RETURN, EXP(ALOG10(x2 + 1)) * SIN(x1)

END

PRO radbf_ex3

; Set up initial parameters.

RANDOMOPT, Set = 123457

ndata          = 50

num_centers   = ndata

xydata        = DBLARR(2, ndata)

fdata         = DBLARR(ndata)

xrange        = 8

yrange        = 5

xydata(0,*) = xrange * RANDOM(ndata, /Double)

xydata(1,*) = yrange * RANDOM(ndata, /Double)

fdata(*) = f(xydata(0, *), xydata(1, *))

; Generate data.

radial_struct = $
RADBF(xydata, fdata, num_centers, Ratio=0)

; Compute fit using RADBF.

WINDOW, /Free

; Plot results.

nx = 25

ny = 25

; Variables nx and ny are the coarseness of the plotted surfaces.

xyfit      = DBLARR(2, nx * ny)

xyfit(0, *) = xrange * $
(FINDGEN(nx * ny)/ny)/(nx - 1)

xyfit(1, *) = yrange * $
(FINDGEN(nx * ny) MOD ny)/(ny - 1)
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zfit = TRANSPOSE(REFORM(RADBE(xyfit, $
Radial_Struct), ny, nx))

; Use TRANSPOSE and REFORM in order to get the results
; into a form that SURFACE can use.

xt = xrange * FINDGEN(nx)/(nx-1)

yt = yrange * FINDGEN(ny)/(ny-1)

SURFACE, zfit, xt, yt, /Save, $
Zrange = [MIN(zfit), MAX(zfit)]

PLOTS, xydata(0, *), xydata(1, *), fdata, $
/T3d, Psym = 4, Symsize = 2

; Plot the original data points over the surface plot.

WINDOW, /Free

orig = DBLARR(nx, ny)

FOR i = 0, (nx-1) DO FOR j = 0, (ny-1) DO $
orig(i, j) = f(xt(i), yt(j))

SURFACE, orig, xt, yt, $
Zrange = [MIN(zfit), MAX(zfit)]

; Plot original function.

END

Figure 3-19  Surface fit to scattered data.
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Figure 3-20  Function used to generate scattered data.
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RADBE Function 
Evaluates a radial-basis fit computed by RADBF.

Usage

result = RADBE(abscissa, radial_fit)

Input Parameters

abscissa — Two-dimensional array containing the abscissa of the data points at 
which the fit is evaluated. Argument abscissa (i, j) is the abscissa value of the
j-th data point in the i-th dimension.

radial_fit — Radial-basis structure to be used for the evaluation.

Returned Value

result — An array containing the values of the radial-basis fit at the desired 
values.

Discussion

Function RADBE evaluates a radial-basis fit from data generated by RADBF. 
See the documentation for RADBF for details. 

Example

See the description of RADBF (page 174) for examples using RADBE.
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INTERPOL Function 
Standard Library function that linearly interpolates vectors on a regular or irreg-
ular grid.

Usage

result = INTERPOL(v [, n, x, u])

Input Parameters

v — One-dimensional vector of any type except string.

n — Number of points of result. Both input and output grids are regular. Output 
grid abscissa value = FLOAT(i) / N_ELEMENTS(v), for i = 0 to n – 1.

x — Abscissa values for v. This argument is for irregular grids and must have 
the same number of elements as v. Argument x must be monotonic, either 
ascending or descending.

u — Abscissa values for result. This argument is for irregular grids. The result 
has the same number of elements as u, and u need not be monotonic.

Returned Value

result — A floating vector of n points determined from linearly interpolating 
input vector. If v is double or complex, result is double or complex.

Discussion

The i-th element of the vector returned is 

v(x) + (x – FIX(x)) (v(x + 1) – v(x)) 

where 

x = [i(m – 1)] / (n – 1) 

for i = 0 to n – 1; m = number of elements in v for regular grids. For irregular 
grids, x = u(i), and m = number of points of input vector. 
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BILINEAR Function 
Standard Library function that allows users to determine bilinear interpolate at a 
set of reference points.

Usage

result = BILINEAR(p, ix, jy)

Input Parameters

p — Two-dimensional data array. Parameters ix and jy contain the “virtual sub-
scripts” of p to look up values for the output.

ix — One- or two-dimensional array. If one-dimensional, ix contains the sub-
scripts to look up in p. The same set of subscripts is used for all rows in the 
output array. If two-dimensional, ix also contains the “x-axis” subscripts except 
if specified at all points in the output array. 

In either case, ix must satisfy 0 ≤ min(ix) < n0 and 0 < max(ix) ≤ n0, where n0 
is the total number of subscripts in the first dimension of p.

jy — One- or two-dimensional array. If jy is one-dimensional, it contains the 
“y-axis” subscripts to look up in p. The same mask is used in all columns in the 
output.

In either case, jy must satisfy 0 ≤ min(jy) < m0 and 0 < max (jy) ≤ m0, where 
m0 is the total number of subscripts in the second dimension of p.

Returned Value

result — The interpolated array.

Discussion

Function BILINEAR invokes the bilinear interpolation algorithm to evaluate 
each element in z at virtual coordinates contained in ix and jy with the data in p.

Use two-dimensional arrays for ix and jy when calling BILINEAR because the 
algorithm is somewhat faster. If ix and jy are one-dimensional, they are con-
verted to two-dimensional arrays on return from the function. They can then be 
reused on subsequent calls to save time. The two-dimensional array p is 
unchanged on return.
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Example
p = FLTARR(3, 3)

ix = [0.1, 0.2]

jy = [0.6, 2.1]

PRINT, BILINEAR(p, ix, jy)

0.00000 0.00000

0.00000 0.00000

Then, z(0, 0) is returned as though it were equal to p(0.1, 0.6), interpolated from 
the nearest neighbors at p(0, 0), p(1, 0), p(1, 1), and p(0, 1). 
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Introduction 

Univariate and Bivariate Quadrature 

The first function in this chapter, INTFCN, is designed to compute approxima-
tions to integrals of the following form:

or

The weight function w is used to incorporate known singularities (either alge-
braic or logarithmic) or to incorporate oscillations. The default action of this 
function assumes univariate quadrature, a weight function w(x) = 1, and the 
existence of endpoint singularities. Even if no endpoint singularities exist, the 
default method is still effective for general-purpose integration. If more effi-
ciency is desired, then a more specialized method can be specified through the 
use of specific parameter and keyword combinations. The available methods 
can be summarized as follows, where the description refers to subsections of the 
documentation for the function INTFCN:

•  w(x) = 1 

Integration of a function with endpoint singularities (default method)

Integration of a function based on Gauss-Kronrod rules

Integration of a function with singular points given

Integration of a function over an infinite or semi-infinite interval 

Integration of a smooth function using a nonadaptive method

Integration of a two-dimensional iterated integral

•  w(x) = sinωx or w(x) = cosωx

Integration of a function containing a sine or cosine factor 

Computing the Fourier sine or cosine transform

•  w(x) = (x – a)α (b – x)β ln(x – a) ln(b – x), where the ln factors are optional

Integration of functions with algebraic-logarithmic singularities

•  w(x) = 1 / (x – c)

f x( )w x( ) xd
a

b

∫

f x y,( ) x ydd
g x( )

h x( )
∫a

b

∫
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Integrals in the Cauchy principle value sense 

Function INTFCN returns an estimated answer R and provides keywords to 
specify a requested absolute error ε, the requested relative error ρ, and a named 
variable in which to return an estimate of the error E. These numbers are related 
in the equation below.

One situation that occasionally arises in univariate quadrature concerns the 
approximation of integrals when only tabular data are given. The functions 
described above do not directly address this question. However, the standard 
method for handling this problem is to first interpolate the data, then integrate 
the interpolant. This can be accomplished by using the PV-WAVE:IMSL Math-
ematics spline interpolation functions with the spline integration function 
SPINTEG (page 137), which can be found in Chapter 3, Interpolation and 
Approximation.

Multivariate Quadrature 

Two functions, INTFCN and INTFCNHYPER, have been included in this chap-
ter that can be used to approximate certain multivariate integrals.

Function INTFCN can be called with additional parameters and keywords to 
return an approximation to a two-dimensional iterated integral of the form 
below.

Function INTFCNHYPER returns an approximation to the integral of a function 
of n variables over a hyper-rectangle as shown in the equation below.

When working with two-dimensional, tensor-product tabular data, use the 
PV-WAVE:IMSL Mathematics spline interpolation function BSINTERP, fol-
lowed by the spline integration function SPINTEG. 

f x( )w x( ) xd
a

b

∫ R– E max ε ρ, f x y,( )dydx
a

b

∫ 
 
 

≤ ≤

f x y,( ) y xdd
g x( )

h x( )

∫a

b

∫

… f x0 … xn 1–, ,( ) xn 1– … x0dd
an 1–

bn 1–∫a0

b0∫
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Gauss Quadrature 

For a fixed number of nodes, N, the Gauss quadrature rule is the unique rule 
that integrates polynomials of degree less than 2N. These quadrature rules can 
be easily computed using procedure GQUAD, which produces the points {xi} 
and weights {wi} for i = 1, ..., N that satisfy

for all functions f that are polynomials of degree less than 2N. The weight func-
tions w can be selected from the following table: 

Where permissible, GQUAD also computes Gauss-Radau and Gauss-Lobatto 
quadrature rules.

w(x) Interval Name

1 (–1, 1) Legendre

(–1, 1) Chebyshev 1st kind

(–1, 1) Chebyshev 2nd kind

(–infinity, infinity) Hermite

(–1, 1) Jacobi

(0, infinity) Generalized Laguerre

1/cosh(x) (–infinity, infinity) Hyperbolic cosine

f x( )w x( ) xd
a

b

∫ f xi( )wii 1=

N

∑=

1 1 x2–( )⁄

1 x
2

–

e
x– 2

1 x+( )α
1 x–( )β

e
x–
x

a
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INTFCN Function 
Integrates a user-supplied function. Using different combinations of keywords 
and parameters, one of several types of integration can be performed including 
the following:

•  Default method

•  Integration of functions based on Gauss-Kronrod rules

•  Integration of functions with singular points given

•  Integration of functions with algebraic-logarithmic singularities

•  Integration of functions over an infinite or semi-infinite interval

•  Integration of functions containing a sine or cosine factor

•  Computation of Fourier sine and cosine transforms

•  Integrals in the Cauchy principle value sense

•  Integration of smooth functions using a nonadaptive rule

•  Computation of two-dimensional iterated integrals

Default Method

Usage

result = INTFCN(f, a, b) 

Input Parameters 

In the default case, the following three parameters are required. If another 
method of integration is desired, a combination of these parameters, along with 
additional parameters and keywords must be specified. For a description of the 
additional parameters and keywords to use for specific methods of integration, 
see the "Optional Methods of Integration" section on page 196.

f — Scalar string specifying the name of a user-supplied function to be inte-
grated. The function f accepts one scalar parameter and returns a single scalar of 
the same type.

a — Scalar expression specifying the lower limit of integration.

b — Scalar expression specifying the upper limit of integration.
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Returned Value

result — An estimate of the desired integral. If no value can be computed, then 
NaN (Not a Number) is returned.

Global Keywords

The following seven keywords can be used in any combination with each 
method of integration except the nonadaptive method, which is triggered by the 
keyword Smooth. Because of this, these global keywords are documented here 
only and referred to within the Method Keywords subsections of the Optional 
Method of Integrations section of this routine.

Input

Double — If present and nonzero, double precision is used.

Err_Abs — Absolute accuracy desired.

Default: Err_Abs = SQRT(ε), where ε is the machine precision

Err_Rel — Relative accuracy desired.

Default: Err_Rel = SQRT(ε), where ε is the machine precision

Max_Subinter — Number of subintervals allowed.

Default: Max_Subinter = 500

Output

Err_Est — Named variable in which an estimate of the absolute value of the 
error is stored. 

N_Subinter — Named variable into which the number of subintervals generated 
is stored.

N_Evals — Named variable into which the number of evaluations of f is 
stored.

Discussion of Default Method

The default method used by INTFCN is a general-purpose integrator that uses a 
globally adaptive scheme to reduce the absolute error. It subdivides the interval 
[a, b] and uses a 21-point Gauss-Kronrod rule to estimate the integral over each 
subinterval. The error for each subinterval is estimated by comparison with the 
10-point Gauss quadrature rule. The subinterval with the largest estimated error 
is then bisected, and the same procedure is applied to both halves. The bisection 
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process is continued until either the error criterion is satisfied, the roundoff 
error is detected, the subintervals become too small, or the maximum number of 
subintervals allowed is reached. This method uses an extrapolation procedure 
known as the ε-algorithm. This method is based on the subroutine QAGS by 
Piessens et al. (1983).

Should the default method fail to produce acceptable results, consider one of the 
more specialized methods available by using method-specific keywords for this 
function.

Example

An estimate of

 

is computed, then compared to the actual value.

.RUN

; Define the function to be integrated.

- FUNCTION f, x

- RETURN, x^2

- END

ans = INTFCN("f", 0, 3)

; Call INTFCN to compute the integral.

PM, ’Computed Answer:’, ans

; Output the results.

Computed Answer:

9.00000

PM, ’Exact - Computed:’, 3^2 - ans

Exact - Computed:

0.00000

Warning Errors

MATH_ROUNDOFF_CONTAMINATION — Roundoff error, preventing the 
requested tolerance from being achieved, has been detected.

MATH_PRECISION_DEGRADATION — Degradation in precision has been 
detected.

x2 xd
0

3∫
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MATH_EXTRAPOLATION_ROUNDOFF — Roundoff error in the extrapolation 
table, preventing the requested tolerance from being achieved, has been 
detected.

MATH_EXTRAPOLATION_PROBLEMS — Extrapolation table, constructed for 
convergence acceleration of the series formed by the integral contributions of 
the cycles, does not converge to the requested accuracy.

MATH_BAD_INTEGRAND_BEHAVIOR — Bad integrand behavior occurred in 
one or more cycles.

Fatal Errors

MATH_DIVERGENT — Integral is probably divergent or slowly convergent.

MATH_MAX_SUBINTERVALS — Maximum number of subintervals allowed 
has been reached.

MATH_MAX_CYCLES — Maximum number of cycles allowed has been 
reached.

MATH_MAX_STEPS — Maximum number of steps allowed have been taken. 
The integrand is too difficult for this routine.

Optional Methods of Integration
By specifying different sets of parameters and/or keywords, a number of differ-
ent types of integration can be performed. Internally, the method to be used is 
determined by examining the combination of parameters and/or keywords used 
in the call to INTFCN. To specify a specific method of integration, refer to the 
appropriate discussion.

Integration of Functions Based on Gauss-Kronrod Rules 

This method integrates functions using a globally adaptive scheme based on 
Gauss-Kronrod rules.

Usage 

Triggered by the use of keyword Rule.

result = INTFCN(f, a, b, Rule = rule)
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Returned Value

result — The value of

 

is returned. If no value can be computed, NaN is returned.

Method Input Keywords

In addition to the keywords listed in the "Global Keywords" section, the follow-
ing keyword is available:

Rule — If specified, the integral is computed using a globally adaptive scheme 
based on Gauss-Kronrod rules.

Discussion of Integration of Functions Based on Gauss-Kronrod 
Rules

This method is a general-purpose integrator that uses a globally adaptive 
scheme to reduce the absolute error. It subdivides the interval [a, b] and uses a 
(2k+1)-point Gauss-Kronrod rule to estimate the integral over each subinterval. 
The error for each subinterval is estimated by comparison with the k-point 
Gauss quadrature rule. The subinterval with the largest estimated error is then 
bisected, and the same procedure is applied to both halves. The bisection pro-
cess is continued until either the error criterion is satisfied, roundoff error is 
detected, the subintervals become too small, or the maximum number of sub-
intervals allowed is reached. This method is based on the subroutine QAG by 
Piessens et al. (1983).

If this method is used, the function should be coded to protect endpoint singu-
larities if they exist.

Rule Gauss-Kronrod Rule

1 7-15 points

2 10-21 points

3 15-31 points

4 20-41 points

5 25-51 points

6 30-61 points

f x( ) xd
a

b∫



198  Chapter 4: Quadrature PV-WAVE:IMSL Mathematics Reference

Example

The value of

 

is computed. Since the integrand is oscillatory, Rule = 6 is used. The exact 
value is 0.50406706. The values of the actual and estimated error are machine 
dependent.

.RUN

; Define the function to be integrated.

- FUNCTION f, x

- RETURN, SIN(1/x) 

- END

ans = INTFCN("f", 0, 1, Rule = 6)

; Call INTFCN, with Rule = 6, to compute the integral based on the
; specified Gauss-Kronrod rule.

PM, ’Computed Answer:’,ans

; Output the results.

Computed Answer:

0.504051

exact = .50406706

PM, ’EXACT - COMPUTED:’, exact - ans

Exact - Computed:

1.62125e-05

Error Handling 

See Warning Errors on page 195 and Fatal Errors on page 196. 

Integration of Functions with Singular Points Given 

This method integrates functions with singularity points given.

Usage 

Requires the use of keyword Sing_Pts.

result = INTFCN(f, a, b, Sing_Pts = points)

Returned Value

result — The value of 

1 x⁄( ) xdsin
0

1∫



Optional Methods of Integration  199

 

is returned. If no value can be computed, NaN is returned.

Method Input Keywords

In addition to the keywords listed in the "Global Keywords" section, the follow-
ing keyword is available: 

Sing_Pts — If present, specifies the abscissas of the singularities. These values 
should be interior to the interval [a, b].

Discussion of Integration of Functions with Singular Points Given

This method is a special-purpose integrator that uses a globally adaptive scheme 
to reduce the absolute error. It subdivides the interval [a, b] into N+1 user-sup-
plied subintervals, where N is the number of singular points, and uses a 21-
point Gauss-Kronrod rule to estimate the integral over each subinterval. The 
error for each subinterval is estimated by comparison with the 10-point Gauss 
quadrature rule. The subinterval with the largest estimated error is then bisected, 
and the same procedure is applied to both halves. The bisection process is con-
tinued until either the error criterion is satisfied, the roundoff error is detected, 
the subintervals become too small, or the maximum number of subintervals 
allowed is reached. This method uses an extrapolation procedure known as the 
ε-algorithm. This method is based on the subroutine QAGP by Piessens et al. 
(1983). 

Example

The value of

is computed. The values of the actual and estimated error are machine depen-
dent. Note that this subfunction never evaluates the user-supplied function at the 
user-supplied breakpoints.

.RUN

; Define the function to be integrated. 

- FUNCTION f, x

- RETURN, x^3 * ALOG(ABS((x^2 - 1) * $

- (x^ 2 - 2)))

- END

f x( ) xd
a

b∫

x
3
ln x

2
1–( ) x

2
2–( ) xd

0

3

∫ 61ln2
77
4

------ ln7 27–+=
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ans = INTFCN("f", 0, 3, $

Sing_Pts = [1, SQRT(2)], N_Evals = nevals)

; Call INTFCN using keyword Sing_Pts to specify the singular
; points.

PM, ’Computed Answer:’, ans

; Output the results.

Computed Answer:

52.7408

exact = 61 * ALOG(2) + (77/4.) * ALOG(7) - 27

PM, ’Exact - Computed:’, exact - ans

Exact - Computed:

-2.67029e-05

PM, ’Number of Function Evaluations:’, $

nevals

Number of Function Evaluations:

819

Error Handling 

See Warning Errors on page 195 and Fatal Errors on page 196. 

Integration of Functions with Algebraic-logarithmic 
Singularities 

This method integrates functions with algebraic-logarithmic singularities.

Method Input Parameters

alpha — The strength of the singularity at a. Must be greater than −1.

beta — Strength of the singularity at b. Must be greater than −1.

Usage 

Triggered by the use of the parameters alpha and beta and one of the keywords 
below in addition to f, a, and b.

result = INTFCN(f, a, b, alpha, beta, /Algebraic)

result = INTFCN(f, a, b, alpha, beta, /Alg_Left_Log)

result = INTFCN(f, a, b, alpha, beta, /Alg_Log)
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result = INTFCN(f, a, b, alpha, beta, /Alg_Right_Log)

Returned Value

result — The value of 

 

is returned, where w (x) is defined by one of the keywords below. If no value 
can be computed, NaN is returned.

Method Input Keywords

In addition to the keywords listed in the "Global Keywords" section, the follow-
ing keywords are available. Exactly one of the following keywords must be 
specified:

Algebraic — If present and nonzero, uses the weight function 
( x – a )α ( b – x )β. This is the default weight function for this method of 
integration.

Alg_Left_Log — If present and nonzero, uses the weight function 
( x – a )α ( b – x )β log( x – a ).

Alg_Log — If present and nonzero, uses the weight function 
( x – a )α ( b – x )β log( x – a ) log( x – b ).

Alg_Right_Log — If present and nonzero, uses the weight function 
( x – a )α ( b – x )β log( x – b ).

Discussion of Integration of Functions with Algebraic-logarithmic 
Singularities

This method is a special-purpose integrator that uses a globally adaptive scheme 
to reduce the absolute error. It computes integrals whose integrands have the 
special form w (x) f (x), where w (x) is a weight function. A combination of 
modified Clenshaw-Curtis and Gauss-Kronrod formulas is employed. This 
method is based on the subroutine QAWS, which is fully documented by 
Piessens et al. (1983).

If this method is used, the function should be coded to protect endpoint singu-
larities if they exist.

f x( )w x( ) xd
a

b∫
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Example

The value of 

is computed.

.RUN

; Define the function to be integrated.

- FUNCTION f, x

- RETURN, SQRT((1 + x))

- END

ans = $

INTFCN("f", 0, 1, /Alg_Left_Log, 1.0, .5 )

; Call INTFCN with keyword Alg_Left_Log set and values for the
; method parameters alpha and beta.

PM, ’Computed Answer:’, ans

; Output the results.

Computed Answer:

-0.213395

exact = (3 * ALOG(2) - 4)/9

PM, ’Exact - Computed:’, exact - ans

Exact - Computed:

1.49012e-08

Error Handling 

See Warning Errors on page 195 and Fatal Errors on page 196. 

1 x+( ) 1 x–( )[ ]
1 2⁄

ln x( ) xd
0

1

∫ 3ln 2( ) 4–
9

-------------------------=
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Integration of Functions Over an Infinite or Semi-infinite 
Interval 

This method integrates functions over an infinite or semi-infinite interval.

Method Input Parameters

bound — The finite limit of integration. If either of the keywords Inf_Bound or 
Bound_Inf are specified, this parameter is required.

Usage 

Triggered by the presence of the function f, a bound bound, and one of the key-
words Inf_Inf, Inf_Bound, or Bound_Inf.

result = INTFCN(f, /Inf_Inf)

result = INTFCN(f, bound, /Inf_Bound)

result = INTFCN(f, bound, /Bound_Inf)

Returned Value

result — The value of 

 

is returned, where a and b are appropriate integration limits. If no value can be 
computed, NaN is returned.

Method Input Keywords

In addition to the keywords listed in the "Global Keywords" section, the follow-
ing keywords are available (exactly one of the following keywords must be 
specified):

Inf_Inf — If present and nonzero, integrates a function over the range 
( –infinity, infinity).

Inf_Bound — If present and nonzero, integrates a function over the range 
( –infinity,bound ).

Bound_Inf — If present and nonzero, integrates a function over the range ( 
bound, infinity).

f x( ) xd
a

b∫
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Discussion of Integration of Functions Over an Infinite or 
Semi-infinite Interval 

This method is a special-purpose integrator that uses a globally adaptive scheme 
to reduce the absolute error. It initially transforms an infinite or semi-infinite 
interval into the finite interval [0, 1]. It then uses the same strategy that is used 
when specifying the keyword Sing_Pts. This method is based on the subroutine 
QAGI by Piessens et al. (1983).

If this method is used, the function should be coded to protect endpoint singu-
larities if they exist.

Example

The value of 

is computed.

.RUN

; Define the function to be integrated.

- FUNCTION f, x

- RETURN, ALOG(x)/(1 + (10 * x)^2)

- END

ans = INTFCN("f", 0, /Bound_Inf)

; Call INTFCN with keyword Bound_Inf set. Notice that only the lower
; limit of integration is given.

PM, ’Computed Answer:’, ans

; Output the results.

Computed Answer:

-0.361689

exact = -!Pi * ALOG(10)/20

PM, ’Exact - Computed:’, exact - ans

Exact - Computed:

5.96046e-08

Error Handling 

See Warning Errors on page 195 and Fatal Errors on page 196. 

ln x( )
1 10x( )2+
------------------------- xd

0

∞
∫ πln 10( )–

20
---------------------=
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Integration of Functions Containing a Sine or Cosine 
Factor 

This method integrates functions containing a sine or a cosine factor.

Method Input Parameters

omega — The frequency of the trigonometric weighting function.

Usage 

Triggered by the use of parameter omega and one of the keywords Sine or 
Cosine in addition to f, a, and b.

result = INTFCN(f, a, b, omega, /Sine)

result = INTFCN(f, a, b, omega, /Cosine)

Returned Value

result — The value of 

, 

where the weight function w (ωx) is defined by the keywords below, is returned. 
If no value can be computed, NaN is returned.

Method Input Keywords

In addition to the keywords listed in the "Global Keywords" section, the follow-
ing keywords are available (exactly one of the following keywords must be 
specified):

Sine — If present and nonzero, sin (ωx) is used for the integration weight 
function.

Cosine — If present and nonzero, cos (ωx) is used for the integration weight 
function.

Max_Moments — A scalar expression specifying an upper bound on the num-
ber of Chebyshev moments that can be stored. Increasing (decreasing) this 
number may increase (decrease) execution speed and space used.

Default: Max_Moments = 21 

f x( )w ωx( ) xd
a

b∫
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Discussion of Integration of Functions Containing a Sine or Cosine 
Factor 

This method is a special-purpose integrator that uses a globally adaptive scheme 
to reduce the absolute error. It computes integrals whose integrands have the 
special form w (x) f (x), where w (x) is either  cos (ωx) or  sin (ωx). Depending 
on the length of the subinterval in relation to the size of ω, either a modified 
Clenshaw-Curtis procedure or a Gauss-Kronrod 7/15 rule is employed to 
approximate the integral on a subinterval. This method is based on the subrou-
tine QAWO by Piessens et al. (1983).

If this method is used, the function should be coded to protect endpoint singu-
larities if they exist.

Example

The value of 

 

is computed. The following is the exact answer:

.RUN

; Define the function to be integrated.

- FUNCTION f, x

- RETURN, x^2

- END

ans = INTFCN("f", 0, 1, 3 * !Pi, /Sine)

; Call INTFCN with keyword Sine set and a value for the method
; parameter omega.

PM, ’Computed Answer:’, ans

; Output the results.

Computed Answer:

0.101325

exact = ((3 * !Pi)^2 - 2)/((3 * !pi)^3) $

- 2/(3 * !Pi)^3

PM, ’Exact - Computed:’, exact - ans

x2 3πx( ) xdsin
0

1∫

3π( )2 4–
3π( )3

----------------------
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Exact - Computed:

0.00000

Error Handling 

See Warning Errors on page 195 and Fatal Errors on page 196. 

Computation of Fourier Sine or Cosine Transforms 

This method computes Fourier sine or cosine transforms.

Method Input Parameters

omega — The frequency of the trigonometric weighting function.

Usage 

Triggered by the use of parameter omega and one of the keywords Sine or 
Cosine in addition to f and a.

result = INTFCN(f, a, omega, /Sine)

result = INTFCN(f, a, omega, /Cosine)

Returned Value

result — The value of 

,

where the weight function w (ωx) is defined by the keywords below, is returned. 
If no value can be computed, NaN is returned.

Method Input Keywords

In addition to the keywords listed in the "Global Keywords" section, the follow-
ing keywords are available (exactly one of the keywords Sine or Cosine must be 
specified):

Sine — If present and nonzero, sin (ωx) is used for the integration weight 
function.

Cosine — If present and nonzero, cos (ωx) is used for the integration weight 
function.

f x( )w ωx( ) xd
a

∞∫
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Max_Moments — Number of subintervals allowed in the partition of each 
cycle.

Default: Max_Moments = 21

Method Output Keywords

N_Cycles — Named variable into which the number of cycles generated is 
stored.

Discussion of Computation of Fourier Sine or Cosine Transforms

This method is a special-purpose integrator that uses a globally adaptive scheme 
to reduce the absolute error. It computes integrals whose integrands have the 
special form w (x) f (x), where w (x) is either cos (ωx) or sin (ωx). The integra-
tion interval is always semi-infinite of the form [a, infinity]. This method is 
based on the subroutine QAWF by Piessens et al. (1983).

If this method is used, the function should be coded to protect endpoint singu-
larities if they exist.

Example

The value of

∫
0

∞

is computed. Notice that the function is coded to protect for the singularity at 
zero.

.RUN

; Define the function to be integrated.

- FUNCTION f, x

- IF (x EQ 0) THEN RETURN, x $

- ELSE RETURN, 1/SQRT(x)

- END

ans = INTFCN("f", 0, !Pi/2, /Cosine)

; Call INTFCN with keyword Cosine set and a value for the method
; specific parameter omega.

PM, ’Computed Answer:’, ans

; Output the results.

Computed Answer:

πx
2

------ 
 cos

x
-------------------- xd 1=
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0.101325

exact = 1.0

PM, ’Exact - Computed:’, exact - ans

Exact - Computed:

0.00000

Error Handling 

See Warning Errors on page 195 and Fatal Errors on page 196. 

Integrals in the Cauchy Principle Value Sense 

This method computes integrals of the form

 

in the Cauchy principal value sense.

Method Input Parameters

c — The singular point must not equal a or b.

Usage 

Triggered by the use of parameter c and keyword Cauchy in addition to f, a, 
and b.

result = INTFCN(f, a, b, c, /Cauchy)

Returned Value

result — The value of

is returned. If no value can be computed, NaN is returned.

Method Input Keywords

In addition to the keywords listed in the "Global Keywords" section, the follow-
ing keyword is available (requires the use of keyword Cauchy):

f x( )
x c–
----------- xd

a

b∫

f x( )
x c–----------- xd

a

b∫
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Cauchy — If present and nonzero, computes integrals of the form

+

in the Cauchy principal value sense.

Discussion of Integrals in the Cauchy Principle Value Sense

This method uses a globally adaptive scheme in an attempt to reduce the abso-
lute error. It computes integrals whose integrands have the special form w (x) f 
(x), where w (x) = 1/(x − c). If c lies in the interval of integration, then the inte-
gral is interpreted as a Cauchy principal value. A combination of modified 
Clenshaw-Curtis and Gauss-Kronrod formulas is employed. The method is an 
implementation of the subroutine QAWC by Piessens et al. (1983).

If this method is used, the function should be coded to protect endpoint singu-
larities if they exist.

Example

The Cauchy principal value of

is computed.

.RUN

; Define the function to be integrated.

- FUNCTION f, x

- RETURN, 1/(5 * x^3 + 6)

- END

ans = INTFCN("f", -1, 5, 0, /Cauchy)

; Call INTFCN with keyword Cauchy set.

PM, ’Computed Answer:’, ans

; Output the results.

Computed Answer:

-0.0899440

exact = ALOG(125/631.)/18

PM, ’Exact - Computed:’, exact - ans

Exact - Computed:

1.49012e-08

f x( )
x c–
----------- xd
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b
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Error Handling 

See Warning Errors on page 195 and Fatal Errors on page 196. 

Integration of Smooth Functions Using a Nonadaptive 
Rule 

This method integrates smooth functions using a nonadaptive rule.

Usage 

Triggered by the use of keyword Smooth in addition to f, a, and b.

result = INTFCN(f, a, b, /Smooth)

Returned Value

result — The value of 

is returned. If no value can be computed, NaN is returned.

Method Input Keywords

Because this method is nonadaptive, there are fewer options with the algorithm. 
For this method, all keywords described in Global Keywords on page 194 do 
not apply. A complete list of the available keywords is given below. This 
method requires the use of keyword Smooth.

Smooth — If present and nonzero, uses a nonadaptive rule to compute the 
integral.

Double — If present and nonzero, uses double precision.

Err_Abs — Absolute accuracy desired.

Default: Err_Abs = SQRT(ε), where ε is the machine precision

Err_Rel — Relative accuracy desired.

Default: Err_Rel = SQRT(ε), where ε is the machine precision

Method Output Keywords

Err_Est — Named variable into which an estimate of the absolute value of the 
error is stored.

f x( ) xd
a

b

∫
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Discussion of Integration of Smooth Functions Using a Nonadap-
tive Method

This method is designed to integrate smooth functions. It implements a non-
adaptive quadrature procedure based on nested Paterson rules of order 10, 21, 
43, and 87. These rules are positive quadrature rules with degree of accuracy 
19, 31, 64, and 130, respectively. This method applies these rules successively, 
estimating the error until either the error estimate satisfies the user-supplied 
constraints or the last rule is applied.

This method is not very robust, but for certain smooth functions, it can be effi-
cient. This method is based on the subroutine QNG by Piessens et al. (1983). If 
this method is used, the function should be coded to protect endpoint singulari-
ties if they exist.

Example

The value of 

is computed.

.RUN

; Define the function to integrate.

- FUNCTION f, x

- RETURN, x * EXP(x)

- END

ans = INTFCN("f", 0, 2, /Smooth)

; Call INTFCN with keyword Smooth set.

PM, ’Computed Answer:’, ans

Computed Answer:

8.38906

exact = EXP(2) + 1

PM, ’Exact - Computed:’, exact - ans

Exact - Computed:

9.53674e-07 

Error Handling 

See Warning Errors on page 195 and Fatal Errors on page 196. 
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Integration of Two-dimensional Iterated Integrals 

This method integrates two-dimensional iterated integrals.

Method Input Parameters 

f — Scalar string specifying the name of a user-supplied PV-WAVE function to 
be integrated. Function f accepts two scalar parameters and returns a single sca-
lar of the same type.

a — Scalar expression specifying the lower limit of the outer integral.

b — Scalar expression specifying the upper limit of the outer integral.

h — Scalar string specifying the name of a user-supplied PV-WAVE function 
used to evaluate the lower limit of the inner integral. Function h accepts one 
scalar parameter and returns a single scalar of the same type.

g — Scalar string specifying the name of a user-supplied PV-WAVE function 
used to evaluate the upper limit of the inner integral. Function g accepts one 
scalar parameter and returns a single scalar of the same type.

Usage 

Triggered by the use of the parameters g and h and keyword Two_Dimensional 
in addition to f, a, and b.

result = INTFCN(f, a, b, g, h, /Two_Dimensional)

Returned Value

result — The value of

is returned. If no value can be computed, NaN is returned.

Method Keywords

In addition to the keywords listed in the "Global Keywords" section, the follow-
ing keyword is available and must be specified for this method: 

Two_Dimensional — If present and nonzero, integrates a two-dimensional iter-
ated integral.

f x y,( ) y xdd
g x( )

h x( )

∫a

b

∫
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Discussion of Integration of Two-dimensional Iterated Integrals

This method approximates the following two-dimensional iterated integral:

The lower-numbered rules are used for less smooth integrands, while the 
higher-order rules are more efficient for smooth (oscillatory) integrands.

If this method is used, the function should be coded to protect endpoint singu-
larities if they exist.

Example

In this example, the value of the integral 

is computed.

.RUN

; Define the function to be integrated.

- FUNCTION f, x, y

- RETURN, SIN(x + y)

- END

.RUN

; Define the function for the lower limit of the inner integral.

- FUNCTION g, x

- RETURN, x

- END

.RUN

; Define the function for the upper limit of the inner integral.

- FUNCTION h, x

- RETURN, 2 * x

- END

ans = $

INTFCN("f",0,1,"g","h",/Two_Dimensional)

; Call INTFCN with keyword Two_Dimensional set and the
; names of the functions defining the limits of the inner integral.

PM, ’Computed Answer:’, ans

Computed Answer:

0.407609

exact = -SIN(3)/3 + SIN(2)/2

f x y,( ) y xdd
g x( )

h x( )

∫a

b

∫

x y+( )sin y xdd
x

2x∫0
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PM, ’Exact - Computed:’, exact - ans

Exact - Computed:

-5.96046e-08

Error Handling 

See Warning Errors on page 195 and Fatal Errors on page 196. 

INTFCNHYPER Function 
Integrates a function on a hyper-rectangle as follows:

Usage

result = INTFCNHYPER(f, a, b)

Input Parameters

f — Scalar string specifying the user-supplied function to be integrated. 
Function  f accepts as input an array of data points at which the function is to be 
evaluated and returns the scalar value of the function.

a — One-dimensional array containing the lower limits of integration.

b — One-dimensional array containing the upper limits of integration.

Returned Value 

result — The value of the hyper-rectangle function is returned. If no value can 
be computed, NaN is returned.

is returned. If no value can be computed, NaN is returned.

Input Keywords

Err_Abs — Absolute accuracy desired.

Default: Err_Abs = SQRT(ε), where ε is the machine precision

… f x0 … xn 1–, ,( ) xn 1– … xodd
an 1–

bn 1–∫a0

b0∫

… f x0 … xn 1–, ,( ) xn 1– … x0dd
an 1–

bn 1–∫a0

b0∫
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Err_Rel — Relative accuracy desired.

Default: Err_Rel = SQRT(ε), where ε is the machine precision

Max_Evals — Number of evaluations allowed.

Default: Max_Evals = 1,000,000 for n ≤ 2 and Max_Evals = 256n for 
n > 2, where n is the number of independent variables of f

Output Keywords

Err_Est — Named variable into which an estimate of the absolute value of the 
error is stored.

Discussion

Function INTFCNHYPER approximates the following n-dimensional iterated 
integral:

An estimate of the error is returned in the optional keyword Err_Est. The 
approximation is achieved by iterated applications of product Gauss formulas. 
The integral is first estimated by a two-point, tensor-product formula in each 
direction. Then, for ( i = 0, …, n – 1 ), the function calculates a new estimate 
by doubling the number of points in the i-th direction, but halving the number 
immediately afterwards if the new estimate does not change appreciably. This 
process is repeated until either one complete sweep results in no increase in the 
number of sample points in any dimension, the number of Gauss points in one 
direction exceeds 256, or the number of function evaluations needed to com-
plete a sweep exceeds Max_Evals.

Example

In this example, the integral of 

is computed on an expanding cube. The values of the error estimates are 
machine dependent. The exact integral over R is π3/2.

.RUN

… f x0 … xn 1–, ,( ) xn 1– … x0dd
an 1–

bn 1–∫a0

b0∫

e
x0

2
x1

2
x2

2
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; Define the function to be integrated.

- FUNCTION f, x

- RETURN, EXP(-TOTAL(x^2))

- END

limit = !Pi^1.5

; Compute the exact value of the integral.

PM, ’    Limit:’, limit

Limit: 5.56833

FOR i = 1, 6 DO  BEGIN $

a = [-i/2., -i/2., -i/2.] &$

b = [i/2., i/2., i/2.] &$

ans = INTFCNHYPER("f", a, b) &$

PRINT, ’integral = ’, ans, $
’ limit = ’, limit

; Compute values of the integral over expanding cubes and
; output the results after each call to INTFCNHYPER.

integral = 0.785213 limit = 5.56833

 integral = 3.33231 limit = 5.56833

 integral = 5.02107 limit = 5.56833

 integral = 5.49055 limit = 5.56833

 integral = 5.56135 limit = 5.56833

 integral = 5.56771 limit = 5.56833

Warning Errors

MATH_MAX_EVALS_TOO_LARGE — Keyword Max_Evals was set too large.

Fatal Errors

MATH_NOT_CONVERGENT — Maximum number of function evaluations has 
been reached, and convergence has not been attained.

INTFCN_QMC Function
Integrates a function on a hyper-rectangle using a quasi-Monte Carlo method.
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Usage

result =  INTFCN_QMC(f, a, b)

Input Parameters

f  Scalar string specifying the user-supplied function to be integrated. Func-
tion  f accepts as input an array of data points at which the function is to be 
evaluated and returns the scalar value of the function.

a  One-dimensional array containing the lower limits of integration.

b  One-dimensional array containing the upper limits of integration.

Returned Value

The value of

is returned. If no value can be computed, then NaN is returned.

Input Keywords

Err_Abs  Absolute accuracy desired. 

Default: Err_Abs = 1.e-4.

Err_Rel  Relative accuracy desired. 

Default: Err_rel = 1.e-4.

Max_Evals  Number of evaluations allowed. 

Default: No limit

Base  The value of BASE used to compute the Faure sequence.

Skip  The value of SKIP used to compute the Faure sequence.

Double  If present and nonzero, double precision is used.

Output Keywords

Err_est  Named variable into which an estimate of the absolute value of the 
error is stored.

… f x0 … xn 1–, ,( ) xn 1– … x0dd
an 1–

bn 1–∫a0

b0∫
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Discussion

Integration of functions over hypercubes by direct methods, such as INTFCN-
HYPER, is practical only for fairly low dimensional hypercubes. This is 
because the amount of work required increases exponentially as the dimension 
increases.

An alternative to direct methods is Monte Carlo, in which the integral is evalu-
ated as the value of the function averaged over a sequence of randomly chosen 
points. Under mild assumptions on the function, this method will converge like 
1/n1/2, where n is the number of points at which the function is evaluated.

It is possible to improve on the performance of Monte Carlo by carefully choos-
ing the points at which the function is to be evaluated. Randomly distributed 
points tend to be non-uniformly distributed. The alternative to a sequence of 
random points is a low-discrepancy sequence. A low-discrepancy sequence is 
one that is highly uniform.

This function is based on the low-discrepancy Faure sequence, as computed by 
FAURE_NEXT_PT.

Example

FUNCTION F, x

   S = 0.0

   sign = -1.0

   FOR i = 0, N_ELEMENTS(x)-1 DO BEGIN

      prod = 1.0

      FOR j = 0, i DO BEGIN

         prod = prod*x(j)

      END

      S = S + sign*prod

      sign = -sign

   END

   RETURN, s

END

ndim = 10

a = FLTARR(ndim)

a(*) = 0
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b = FLTARR(ndim)

b(*) = 1

result = intfcn_qmc( ’f’, a, b)

PM, result

   -0.333010

GQUAD Procedure 
Computes a Gauss, Gauss-Radau, or Gauss-Lobatto quadrature rule with various 
classical weight functions.

Usage

GQUAD, n, weights, points

Input Parameters

n — Number of quadrature points.

Output Parameters

weights — Named variable into which an array of length n containing the 
quadrature weights is stored.

points — Named variable into which an array of length n containing quadra-
ture points is stored. The default action of this routine is to produce the Gauss 
Legendre points and weights.

Input Keywords

Double — If present and nonzero, double precision is used.

Cheby_First — Computes the Gauss points and weights using the weight 
function 

 

on the interval (−1, 1).

Cheby_Second — Computes the Gauss points and weights using the weight 
function 

1 1 x2–⁄

1 x2–
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on the interval (−1, 1).

Hermite — Computes the Gauss points and weights using the weight function 
exp (–x2) on the interval ( –infinity, infinity ).

Cosh — Computes the Gauss points and weights using the weight function 
1 / cosh (x) on the interval ( –infinity, infinity ).

Jacobi — Specifies an array of length 2 containing the parameters α and β to 
be used in the weight function (1 – x)α (1 + x)β. If this keyword is present, com-
putes the Gauss points and weights using the weight function (1 – x)α (1 + x)β 
on the interval (−1, 1).

Laguerre — Specifies the parameter α to be used in the weight function 
exp (–x) xα. If this keyword is present, computes the Gauss points and weights 
using the weight function exp (–x) xα on the interval (0, infinity).

Fixed_Points — Specifies an array of fixed points. The length of the array can 
be a maximum of 2.

There are two distinct actions taken depending on the length of this array. If 
Fixed_Points specifies an array of length 1 (a scalar), the procedure computes 
the Gauss-Radau points and weights using the specified weight function and the 
fixed point. This formula integrates polynomials of degree less than 2N–1 
exactly. If Fixed_Points specifies an array of length 2, the procedure computes 
the Gauss-Lobatto points and weights using the specified weight function and 
the fixed points. This formula integrates polynomials of degree less than 2N–2 
exactly.

Discussion

Procedure GQUAD produces the points and weights for the Gauss, Gauss-
Radau, or Gauss-Lobatto quadrature formulas for some of the most popular 
weights. The default weight is the weight function identically equal to 1 on the 
interval (−1, 1). In fact, it is slightly more general than this suggests because the 
extra one or two points that can be specified do not have to lie at the endpoints 
of the interval. This procedure is a modification of the subroutine GAUSSQUA-
DRULE (Golub and Welsch 1969).

In the default case, the procedure returns points in x = points and weights in w 
= weights so that

f x( )w x( ) xd
a

b

∫ f xi( )wii 0=

N 1–

∑=
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for all functions f that are polynomials of degree less than 2N.

If the keyword Fixed_Points is specified, then one or two of the above xi is 
equal to the values specified by Fixed_Points. In general, the accuracy of the 
above quadrature formula degrades when n increases. The quadrature rule inte-
grates all functions f that are polynomials of degree less than 2N – F, where F is 
the number of fixed points.

Example

The three-point Gauss Legendre quadrature points and weights are computed, 
then used to approximate the integrals as follows:

Notice that the integrals are exact for the first six monomials, but the last 
approximation is in error. In general, the Gauss rules with k-points integrate 
polynomials with degree less than 2k exactly.

GQUAD, 3, weights, points

; Call GQUAD to get the weights and points.

error = FLTARR(7)

; Define an array to hold the errors.

FOR i = 0, 6 DO error(i) = $
(TOTAL(weights*(points^i))- $
(1-(i MOD 2))*2./(i+1))

; Compute the errors for seven monomials.

PM, ’Error:’, error

; Output the results.

Error:

 -2.38419e-07

 2.68221e-07

 -5.96046e-08

 2.08616e-07

 2.98023e-08

 1.78814e-07

 -0.0457142

x
i

xd
1–

1

∫ i 0 … 6, ,=
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DERIV Function 
Performs numerical differentiation using three-point Lagrangian interpolation.

Usage

result = DERIV([x,] y)

Input Parameters

y — Variable to be differentiated.

x — Differentiates with respect to variable x. This parameter is used for 
unequal point spacing. If omitted, assumes unit spacing for y, i.e., x(i)=i.

Returned Value

result — Derivative of y.

Discussion

See Hildebrand (1956, p. 82).
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FCN_DERIV Function 
Computes the first, second, or third derivative of a user-supplied function.

Usage

result = FCN_DERIV(f, x)

Input Parameters

f — Scalar string specifying a user-supplied function whose derivative at x will 
be computed.

x — Point at which the derivative will be evaluated.

Returned Value 

result — An estimate of the first, second or third derivative of f at x. If no value 
can be computed, NaN is returned.

Input Keywords

Double — If present and nonzero, double precision is used.

Order — The order of the desired derivative (1, 2 or 3).

Default: Order = 1

Stepsize — Beginning value used to compute the size of the interval for approx-
imating the derivative. Stepsize must be chosen small enough that f is defined 
and reasonably smooth in the interval (x − 4.0*Stepsize, x + 4.0*Stepsize), yet 
large enough to avoid roundoff problems.

Default: Stepsize = 0.01

Tolerance — The relative error desired in the derivative estimate. Convergence 
is assumed when (2/3) |d2 − d1| < Tolerance, for two successive derivative esti-
mates, d1 and d2.

Default: Tolerance =

where ε is machine epsilon.

ε4
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Discussion

The function FCN_DERIV produces an estimate to the first, second, or third 
derivative of a function. The estimate originates from first computing a spline 
interpolant to the input function using values within the interval 
(x − 4.0*Stepsize, x + 4.0*Stepsize), then differentiating the spline at x.

Example 1

This example obtains the approximate first derivative of the function 
f(x) = −2sin(3x/2) at the point x = 2.

FUNCTION fcn, x

   f  =  -2*SIN(1.5*x)   

   RETURN,  f

END

deriv1  =  FCN_DERIV("fcn", 2.0)

PRINT, "f’(x)   = ", deriv1

f’(x)   =       2.97008

Example 2

This example obtains the approximate first, second, and third derivative of the 
function f(x) = −2sin(3x/2) at the point x = 2.

FUNCTION fcn,  x

   f  =  -2*SIN(1.5*x)   

   RETURN,  f

END

deriv1  =  FCN_DERIV("fcn", 2.0, /Double)

deriv2  =  FCN_DERIV("fcn", 2.0, ORDER = 2, /Double)

deriv3  =  FCN_DERIV("fcn", 2.0, ORDER = 3, /Double)

PRINT, "f’(x)   = ", deriv1, ",  error =", $

           ABS(deriv1 + 3.0*COS(1.5*2.0))

f’(x)   =        2.9699775,  error =   1.1094893e-07

PRINT, "f’’(x)  = ", deriv2, ",  error =", $
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           ABS(deriv2 - 4.5*SIN(1.5*2.0))

f’’(x)  =       0.63504004,  error =   5.1086361e-08

PRINT, "f’’’(x) = ", deriv3, ",  error =", $

           ABS(deriv3 - 6.75*COS(1.5*2.0))

f’’’(x) =       -6.6824494,  error =   1.1606068e-08
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CHAPTER

5

Differential Equations

Contents of Chapter 
Adams-Gear or Runge-Kutta method ................. ODE Function

Solves a system of partial 
differential equations using the 
method of lines. .........................................PDE_MOL Function

Solves Poisson’s or Helmholtz’s 
equation on a two-dimensional 
rectangle ................................................... POISSON2D Function

Introduction 

Ordinary Differential Equations 

An ordinary differential equation is an equation involving one or more depen-
dent variables called yi, one independent variable, t, and derivatives of the yi 
with respect to t.

In the initial value problem (IVP), the initial or starting values of the dependent 
variables yi at a known value t = t0 are given. Values of yi(t)  for t > t0 or 
t < t0 are required.

The function ODE solves the IVP for ODEs of the form
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with yi(t = t0) specified. Here, fi is a user-supplied function that must be evalu-
ated at any set of values (t, y0, ..., yN – 1), i = 0, ..., N – 1.

The above problem statement is abbreviated by writing it as a system of first-
order ODEs, y(t) = [y0(t), ..., yN – 1(t) ]T , f(t, y) = [f0(t, y), ..., fN – 1(t, y)]T, so that 
the problem becomes y′= f(t, y)  with initial values y(t0).

The system

is said to be stiff if some of the eigenvalues of the Jacobian matrix

 

are large and negative. This is frequently the case for differential equations 
modeling the behavior of physical systems such as chemical reactions proceed-
ing to equilibrium where subspecies effectively complete their reactions in 
different epochs. An alternate model concerns discharging capacitors such that 
different parts of the system have widely varying decay rates (or time 
constants).

Users typically identify stiff systems by the fact that certain numerical differen-
tial equation solvers, such as the Runge-Kutta-Verner fifth-order and sixth-order 
method, are inefficient or they fail completely. Special methods are often 
required. The most common inefficiency is that a large number of evaluations 
of f(t, y) and, hence, an excessive amount of computer time are required to sat-
isfy the accuracy and stability requirements of the software. In such cases, 
keyword R_K_V should not be specified when using the function ODE. For 
more about stiff systems, see Gear (1971, Chapter 11) or Shampine and Gear 
(1979).

dy

dt
y f t y y i Ni

i i n= ′ = = −−, , ,,0 1 0 1
L

K� �

td
dy

y′ f t y,( )= =

∂yi′( ) ∂yj( )⁄{ }
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Partial Differential Equations

The routine PDE_MOL solves the IVP problem for systems of the form

subject to the boundary conditions

and subject to the initial conditions

ui(x, t = t0) = gi(x)

for i = 1, …, N. Here, fi, gi, 

are user-supplied, j = 1, 2.

The routine POISSON2D solves Laplace’s, Poisson’s, or Helmholtz’s equation 
in two dimensions. This routine uses a fast Poisson method to solve a PDE of 
the form 

over a rectangle, subject to boundary conditions on each of the four sides. The 
scalar constant c and the function f are user specified. 
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ODE Function 
Solves an initial value problem, which is possibly stiff, using the Adams-Gear 
methods for ordinary differential equations. Using keywords, the Runge-Kutta-
Verner fifth-order and sixth-order method can be used if the problem is known 
not to be stiff.

Usage

result = ODE(t, y, f)

Input Parameters

t — One-dimensional array containing values of the independent variable. 
Parameter t(0) should contain the initial independent variable value, and the 
remaining elements of t should be filled with values of the independent vari-
able at which a solution is desired.

y — Array containing the initial values of the dependent variables.

f — Scalar string specifying a user-supplied function to evaluate the right-hand 
side. This function takes two parameters, t and y, where t is the current value of 
the independent variable and y is defined above.

The return value of this function is an array defined by the following equation:

Returned Value

result — A two-dimensional array containing the approximate solutions for 
each specified value of the independent variable. The elements (i, *) are the 
solutions for the i-th variable.

Input Keywords

Double — If present and nonzero, double precision is used.

f t y
dy

dt
y,� � = = ′
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Tolerance — Scalar value used to set the tolerance for error control. An attempt 
is made to control the norm of the local error such that the global error is pro-
portional to Tolerance.

Default: Tolerance = 0.001

Hinit — Scalar value used for the initial value for the step size h. Steps are 
applied in the direction of integration.

Default: Hinit = 0.001 | t (i + 1 ) – t (i) |

Hmin — Scalar value used as the minimum value for the step size h.

Default: Hmin = 0.0

Hmax — Scalar value used as the maximum value for the step size h. If key-
word R_K_V is set, Hmax = 2.0 is used. 

Default: largest machine-representable number

Max_Steps — Integer value used in the maximum number of steps allowed per 
time step.

Default: Max_Steps = 500

Max_Evals — Integer value used in the maximum number of function evalua-
tions allowed per time step.

Default: Max_Evals = no enforced limit

Scale — Scalar value used as a measure of the scale of the problem, such as an 
approximation to the Jacobian along the trajectory.

Default: Scale = 1

Norm — Switch determining the error norm. In the following, ei is the abso-
lute value of the error estimate for yi.

0 Minimum of the absolute error and the relative error equals the maxi-
mum of ei/max ( |yi|, 1) for i = 0, …, N_ELEMENTS (y) – 1

1 Absolute error, equals maxiei

2 The error norm is maxi(ei/wi), where wi = max ( |yi|, Floor)

Default: Norm = 0

Floor — Used with Norm. Provides a positive lower bound for the error norm 
option with value 2.

Default: Floor = 1.0
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R_K_V — If present and nonzero, uses the Runge-Kutta-Verner fifth-order and 
sixth-order method.

Adams Gear (Default) Method Only

Jacobian — Scalar string specifying a user-supplied function to evaluate the 
Jacobian matrix. This function takes three parameters, x, y, and yprime, where x 
and y are defined in the description of the user-supplied function f of the Input 
Parameters section and yprime is the array returned by the user-supplied func-
tion f. The return value of this function is a two-dimensional array containing 
the partial derivatives. Each derivative ∂y’i / ∂yj is evaluated at the provided 
(x, y) values and is returned in array location (i, j).

Method — Chooses the class of integration methods:

1 Uses implicit Adams method

2 Uses backward differentiation formula (BDF) methods 

Default: Method = 2

Max_Ord — Defines the highest order formula of implicit Adams type or BDF 
type to use.

Default: value 12 for Adams formulas; value 5 for BDF formulas

Miter — Chooses the method for solving the formula equations:

1 Uses function iteration or successive substitution

2 Uses chord or modified Newton method and a user-supplied Jacobian 
matrix

3 Same as 2 except Jacobian is approximated within the function by 
divided differences

Default: Miter = 3

Output Keywords

N_Step — Named variable into which the array containing the number of steps 
taken at each value of t is stored.

N_Evals — Named variable into which the array containing the number of 
function evaluations used at each value of t is stored.
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Adams Gear (Default) Method Only

N_Jevals — Named variable into which the array containing the number of 
Jacobian function evaluations used at each value of t is stored. The values 
returned are nonzero only if the keyword Jacobian is also used.

Discussion

Function ODE finds an approximation to the solution of a system of first-order 
differential equations of the form

with given initial conditions for y at the starting value for t. The function 
attempts to keep the global error proportional to a user-specified tolerance. The 
proportionality depends on the differential equation and the range of integration.

The function returns a two-dimensional array with the (i, j)-th component con-
taining the i-th approximate solution at the j-th time step. Thus, the returned 
matrix has dimension (N_ELEMENTS (y), N_ELEMENTS (t)). It is important 
to notice here that the initial values of the problem also are included in this 
two-dimensional matrix.

The code is based on using backward differentiation formulas not exceeding 
order five as outlined in Gear (1971) and implemented by Hindmarsh (1974). 
There is an optional use of the code that employs implicit Adams formulas. 
This use is intended for nonstiff problems with expensive functions y′ = f(t, y).

If keyword R_K_V is set, the function ODE uses the Runge-Kutta-Verner fifth-
order and sixth-order method and is efficient for nonstiff systems where the 
evaluations of f(t, y) are not expensive. The code is based on an algorithm 
designed by Hull et al. (1976) and Jackson et al. (1978) and uses Runge-Kutta 
formulas of order five and six developed by J.H. Verner.

Example 1

This is a mildly stiff example problem (F2) from the test set of Enright and 
Pryce (1987).

y’0 = – y0 – y0y1 + k0y1

y’1 = –k1y1 + k2 (1 – y1) y0

td
dy

y′ f t y,( )= =
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y0(0) = 1

y1(0) = 0

k0 = 294.

k1 = 3.

k2 = 0.01020408

.RUN 

; Define function f.

- FUNCTION f, t, y

- RETURN, [-y(0) - y(0) * y(1) + 294. * y(1), $

- -3.*y(1) + 0.01020408*(1. - y(1)) * y(0)]

- END

yp = ODE([0, 120, 240], [1, 0], ’f’)

; Call the ODE code with the values of the independent variable at
; which a solution is desired and the initial conditions.

PM, yp, Format = ’(3f10.6)’, $

Title = ’  y(0)  y(120) y(240)’

; Output results.

 y(0)  y(120) y(240)

 1.000000 0.514591 0.392082

0.000000 0.001749 0.001333

Example 2: Runge-Kutta Method

This example solves 

over the interval [0, 1] with the initial condition y(0) = 1 using the Runge-
Kutta-Verner fifth-order and sixth-order method. The solution is y(t) = e–t.

.RUN

; Define function f.

- FUNCTION f, t, y

- RETURN, -y

- END

yp = ODE([0, 1], [1], ’f’, /R_K_V)

; Call ODE with the keyword R_K_V set.

td
dy

y–=
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PM, yp, Title = ’Solution’

; Output results.

Solution

 1.00000  0.367879

PM, yp(1) - EXP(-1), Title = ’Error’

Error

 0.00000

Example 3: Predator-Prey Problem

Consider a predator-prey problem with rabbits and foxes. Let r be the density of 
rabbits, and let f be the density of foxes. In the absence of any predator-prey 
interaction, the rabbits would increase at a rate proportional to their number, 
and the foxes would die of starvation at a rate proportional to their number. 
Mathematically, the model without species interaction is approximated by the 
following equations:

With species interaction, the rate at which the rabbits are consumed by the 
foxes is assumed to equal the value 2rf. The rate at which the foxes increase 
because they are consuming the rabbits, is equal to rf. Thus, the model differen-
tial equations to be solved are as follows:

 

For illustration, the initial conditions are taken to be r(0) = 1 and f (0) = 3. The 
interval of integration is 0 ≤ t ≤ 40. In the program, y(0) = r and y(1) = f. Func-
tion ODE is then called with 100 time values from 0 to 40.

.RUN

; Define the function f.

- FUNCTION f, t, y

- yp = y

- yp(0) = 2 * y(0) * (1 - y(1))

- yp(1) = -y(1) * (1 - y(0))

- RETURN, yp

- END

r ′ 2r=

f ′ f–=

r ′ 2r 2rf–=

f ′ f– rf+=



236  Chapter 5: Differential Equations PV-WAVE:IMSL Mathematics Reference

y = [1, 3]

; Set the initial values and time values.

t = 40 * FINDGEN(100)/99

y = ODE(t, y, ’f’, /R_K_V)

; Call ODE with R_K_V set to use the Runge-Kutta method.

!P.Font = 0

; Use hardware font.

PLOT, y(0, *), y(1, *), Psym = 2, $

XTitle = ’Density of Rabbits’, $

YTitle = ’Density of Foxes’

; Plot the result.

Figure 5-1  Plot of predator-prey example.

Example 4: Stiff Problems and Changing Defaults

This problem is a stiff example (F5) from the test set of Enright and Pryce 
(1987). An initial step size of h = 10–7 is suggested by these authors. When 
solving a problem that is known to be stiff, using double precision is advisable. 
Function ODE is forced to use the suggested initial step size and double preci-
sion by using keywords.

y’0 = k0 ( –k1y0y1 + k2y3 – k3 y0y2 ) 

y’1 = – k0k1y0y1 + k4y3 

y’2 = k0 ( –k3y0y2 + k5y3 )
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y’3 = k0 ( k1y0y1 – k2y3 + k3 y0y2 )

y0(0) = 3.365 x 10–7 

y1(0) = 8.261 x 10–3 

y2(0) = 1.641 x 10–3 

y3(0) = 9.380 x 10–6 

k0 = 1011

k1 = 3.

k2 = 0.0012

k3 = 9.

k4 = 2 x 107

k5 = 0.001

.RUN

; Define the function.

- FUNCTION f, t, y

- k = [1d11, 3., .0012, 9., 2d7, .001]

- yp = [k(0)*(-k(1)*y(0)*y(1)+k(2)*y(3)- $

- k(3)*y(0)*y(2)),-k(0)*k(1)*y(0)*y(1)+ $

- k(4)*y(3),k(0)*(-k(3)*y(0)*y(2) + $

- k(5)*y(3)),k(0)* (k(1)*y(0)*y(1)- $

- k(2)*y(3)+k(3)*y(0)*y(2))]

- RETURN, yp

- END

t = FINDGEN(500)/5e6

; Set up the values of the independent variable.

y = [3.365e-7, 8.261e-3, 1.641e-3, 9.380e-6]

; Set the initial values.

y = ODE(t, y, ’f’, Hinit = 1d-7, /Double)

; Call ODE.

!P.Multi = [0, 2, 2]

!P.Font = 0

PLOT, t, y(0, *), Title = ’!8y!I0!5’, XTics=2

PLOT, t, y(1, *), Title = ’!8y!I1!5’, XTics=2

PLOT, t, y(2, *), Title = ’!8y!I2!5’, XTics=2

PLOT, t, y(3, *), Title = ’!8y!I3!5’, XTics=2

; Plot each variable on a separate axis.
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Figure 5-2  Plot for each variable.

Example 5: Strange Attractors—The Rossler System

In this example, a strange attractor is illustrated. The strange attractor used is 
the Rossler system, a simple model of a truncated Navier-Stokes equation. The 
Rossler system is given by relation below.

y’0 = – y1 – y2

y’1 = y0 + a y1

y’2 = b + y0 y2 – c y2

The initial conditions and constants are shown below.

y0(0) = 1 

y1(0) = 0

y2(0) = 0

y0

0 5•10-5 1•10-4
0

2•10-7

4•10-7 y1

0 5•10-5 1•10-4
0.000
0.002
0.004
0.006
0.008
0.010

y2

0 5•10-5 1•10-4
0.000
0.002

0.004

0.006

0.008
y3

0 5•10-5 1•10-4
0

2•10-6
4•10-6
6•10-6
8•10-61•10-5
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a = 0.2

b = 0.2

c = 5.7

.RUN

; Define function f.

- FUNCTION f, t, y

- COMMON constants, a, b, c

; Define some common variables.

- yp = y

- yp(0) = -y(1) - y(2)

- yp(1) = y(0) + a * y(1)

- yp(2) = b + y(0) * y(2) - c * y(2)

- RETURN, yp

- END

COMMON constants, a, b, c

a = .2

b = .2

c = 5.7

; Assign values to the common variables.

ntime = 5000

; Set the number of values of the independent variable.

time_range = 200

; Set the range of the independent variable to 0, ..., 200.

max_steps = 20000

; Allow up to 20,000 steps per value of the independent variable.

t = FINDGEN(ntime)/(ntime - 1) * time_range

y = [1, 0, 0]

; Set the initial conditions.

y = ODE(t, y, "f", Max_Steps = max_steps, $

/Double)

; Call ODE using keywords Max_Steps and Double.

!P.Charsize = 1.5

SURFACE, FINDGEN(2, 2), /Nodata, $

XRange = [MIN(y(0, *)), MAX(y(0, *))], $

YRange = [MIN(y(1, *)), MAX(y(1, *))], $

ZRange = [MIN(y(2, *)), MAX(y(2, *))], $
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XTitle = ’!6y!i0’, YTitle = ’y!i1’, $

ZTitle = ’y!i2’, Az = 25, /Save

PLOTS, y(0, *), y(1, *), y(2, *), /T3d

; Set up axes to plot the solution. The call to SURFACE draws the
; axes and defines the transformation used in PLOTS. The
; transformation is saved using keyword Save in SURFACE, then
; applied in PLOTS by setting keyword T3d.

Figure 5-3  Plot of Rossler system.

Example 6: Coupled, Second-order System

Consider the two-degrees-of-freedom system represented by the model (and cor-
responding free-body diagrams) in Figure 5-4. Assuming y1 is greater than y0 
causes the spring k1 to be in tension, as seen by the tensile force k1 (y1 – y0).
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Figure 5-4  Two-degrees-of-freedom system.

NOTE  If y0 is taken to be greater than y1, then spring k1 is in compression, 
with the spring force k1 (y0 – y1). Both methods give correct results when a 
summation of forces is written.

The differential equations of motion for the system are written as follows:

m0y··0 k– 0y0 k1 y1 y0–( )+=

m1y··1 k– 1 y1 y0–( ) k– 2y1=
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Thus,

If given the mass and spring constant values

the following is true:

Now, in order to convert this problem into one which ODE can be used to 
solve, choose the following variables:

y··0

k0 k1+
m0

---------------- 
  y0–

k1

m0
------ 

  y1+=

y··1

k1

m1
------ 

  y0

k1 k2+
m1

---------------- 
 – y1=

m0 m1 1kg= =

k0 k1 k2 1000
N
m
----= = =

y··0 2000–( )y0 1000( )y1+=

y··1 1000( )y0 2000y1–=

z 0( ) y0=

z 1( ) y1=

z 2( ) y·0=

z 3( ) y·1=

k 0( ) 2000–=

k 1( ) 1000=
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which yields the following equations:

The last four equations are the object of the return values of the user-supplied 
function in the exact order as specified above.

The example below loops through four different sets of initial values for z. 

.RUN

; Define a function.

- FUNCTION f, t, z

- k = [-2000, 1000]

- RETURN, [z(2), z(3), k(0) * z(0) + k(1) * $

- z(1), k(1) * z(0) + k(0) * z(1)]

- END

t = FINDGEN(1000)/999

; Independent variable, t, is between 0 and 1.

!P.Multi = [0, 2, 2]

; Place all four plots in one window.

FOR i = 0, 3 DO BEGIN

z = [1, i/3., 0, 0]

z = ODE(t, z, ’f’, Max_Steps = 1000, $

Hinit = 0.001, /R_K_V)

PLOT, t, z(0, *), Thick = 2, $

Title = ’Displacement of Mass’

; Plot the displacement of m0 as a solid line.

OPLOT, t, z(1, *), Linestyle = 1, Thick = 2

; Overplot the displacement of m1 as a dotted line.

END

END

y· 0 z 2( )=

y· 1 z 3( )=

y··0 k 0( )z 0( ) k 1( )z 1( )+=

y··1 k 1( )z 0( ) k 0( )z 1( )+=
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Figure 5-5  Second-order systems with different initial values.

The displacement for m0 is the solid line, and the dotted line represents the dis-
placement for m1. Note that when the initial conditions for 

 and  

are equal, the displacement of the masses is equal for all values of the indepen-
dent variable (as seen in the fourth plot). Also, the two principal modes of this 
problem occur when the following is true:

y·0 y·1

y·0 y· 1 1= =

y··0 1= y··1, 1=
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Fatal Errors

MATH_ODE_TOO_MANY_EVALS — Completion of the next step would make 
the number of function evaluations #, but only # evaluations are allowed.

MATH_ODE_TOO_MANY_STEPS — Maximum number of steps allowed; # 
used. The problem may be stiff.

MATH_ODE_FAIL — Unable to satisfy the error requirement. Tolerance = # 
may be too small.

PDE_MOL Function 
Solves a system of partial differential equations of the form ut = f(x, t, u, ux, 
uxx) using the method of lines. The solution is represented with cubic Hermite 
polynomials.

Usage

result = PDE_MOL(t, y, xbreak, f_ut, f_bc)

Input Parameters

t — One-dimensional array containing values of independent variable.  Ele-
ment t(0) should contain the initial independent variable value (the initial time, 
t0) and the remaining elements of t should be values of the independent variable 
at which a solution is desired.

y —Two-dimensional array of size npde by nx containing the initial values, 
where npde is the number of differential equations and nx is the number of 
mesh points or lines. It must satisfy the boundary conditions.

xbreak — One-dimensional array of length nx containing the breakpoints for 
the cubic Hermite splines used in the x discretization. The points in xbreak must 
be strictly increasing. The values xbreak(0) and xbreak(nx − 1) are the end-
points of the interval.

f_ut — Scalar string specifying an user-supplied function to evaluate ut. Func-
tion f_ut accepts the following input parameters:

npde — Number of equations.

x — Space variable, x.
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t — Time variable, t.

u — One-dimensional array of length npde containing the dependent 
values, u.

ux — One-dimensional array of length npde containing the first deriva-
tives, ux.

uxx — One-dimensional array of length npde containing the second 
derivative, uxx.

The return value of this function is an one-dimensional array of length 
npde containing the computed derivatives ut

f_bc — Scalar string specifying an user-supplied procedure to evaluate the 
boundary conditions. The boundary conditions accepted by PDE_MOL are

NOTE  Users must supply the values αk and βk, which determine the values γk. 
Since γk can depend on t values, γk′ also are required.

npde — Number of equations.  (Input)

x — Space variable, x.  (Input)

t — Time variable, t.  (Input)

alpha — Named variable into which an one-dimensional array of length 
npde containing the αk values is stored.  (Output)

beta — Named variable into which an one-dimensional array of length 
npde containing the βk values is stored.  (Output)

gammap — Named variable into which an one-dimensional array of length 
npde containing the derivatives,

is stored.  (Output)

α β ∂
∂

γk k k
k

ku
u

x
+ =

d

dt
k

k
γ γ= ′
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Returned Value

result — Three-dimensional array of size npde by nx by N_ELEMENTS(t) con-
taining the approximate solutions for each specified value of the independent 
variable.

Input Keywords

Double — If present and nonzero, double precision is used.

Tolerance — Differential equation error tolerance. An attempt is made to con-
trol the local error in such a way that the global relative error is proportional to 
Tolerance.

Default: Tolerance = 100.0*ε, ωηερε ε is machine epsilon. 

Hinit — Initial step size in the t integration. This value must be nonnegative. If 
Hinit is zero, an initial step size of 0.001|ti+1 - ti| will be arbitrarily used. The 
step will be applied in the direction of integration.

Default:  Hinit = 0.0

Deriv_Init — Two-dimensional array that supplies the derivative values 
ux(x, t(0)). This derivative information is input as

Default: Derivatives are computed using cubic spline interpolation

Discussion

Let M = npde, N = nx and xi = xbreak(i). The routine PDE_MOL uses the 
method of lines to solve the partial differential equation system

Deriv_ Init( ,i ) ,k
u

u
x tk
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with the initial conditions 

uk = uk(x, t) at t = t0, where t0 = t(0)

and the boundary conditions

for k = 1, …, M.

Cubic Hermite polynomials are used in the x variable approximation so that the 
trial solution is expanded in the series

where φi(x) and ψi(x) are the standard basis functions for the cubic Hermite 
polynomials with the knots x1 < x2 < … < xN. These are piecewise cubic poly-
nomials with continuous first derivatives. At the breakpoints, they satisfy

According to the collocation method, the coefficients of the approximation are 
obtained so that the trial solution satisfies the differential equation at the two 
Gaussian points in each subinterval,
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for j = 1, …, N. The collocation approximation to the differential equation is

for k = 1, …, M and j = 1, …, 2(N − 1).

This is a system of 2M(N − 1) ordinary differential equations in 2M N unknown 
coefficient functions, ai,k and bi,k. This system can be written in the matrix−vec-
tor form as A dc/dt = F (t, y) with c(t0) = c0 where c is a vector of coefficients 
of length 2M N and c0 holds the initial values of the coefficients. The last 2M 
equations are obtained by differentiating the boundary conditions

for k = 1, …, M.

The initial conditions uk(x, t0) must satisfy the boundary conditions. Also, the 
γk(t) must be continuous and have a smooth derivative, or the boundary condi-
tions will not be properly imposed for t > t0.

If αk = βk = 0, it is assumed that no boundary condition is desired for the k-th 
unknown at the left endpoint. A similar comment holds for the right endpoint. 
Thus, collocation is done at the endpoint. This is generally a useful feature for 
systems of first-order partial differential equations.
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If the number of partial differential equations is M = 1 and the number of break-
points is N = 4, then

The vector c is

c = [a1, b1, a2, b2, a3, b3, a4, b4]T

and the right-side F is

If M > 1, then each entry in the above matrix is replaced by an M × M diago-
nal matrix. The element α1 is replaced by diag(α1,1, …, α1,M). The elements 
αN, β1 and βN are handled in the same manner. The φi(pj) and ψi(pj) elements 
are replaced by φi(pj)IM and ψi(pj)IM where IM is the identity matrix of order M. 
See Madsen and Sincovec (1979) for further details about discretization errors 
and Jacobian matrix structure.

The input array y contains the values of the ak,i. The initial values of the bk,i are 
obtained by using the PV-WAVE cubic spline routine CSINTERP (Chapter 3: 
Interpolation and Approximation) to construct functions 

A
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such that 

The PV-WAVE routine SPVALUE, Chapter 3, “Interpolation and Approxima-
tion” is used to approximate the values 

There is an optional use of PDE_MOL that allows the user to provide the ini-
tial values of bk,i.

The order of matrix A is 2M N and its maximum bandwidth is 6M − 1. The 
band structure of the Jacobian of F with respect to c is the same as the band 
structure of A. This system is solved using a modified version of ODE, 
(page 230). Some of the linear solvers were removed. Numerical Jacobians are 
used exclusively. The algorithm is unchanged. Gear’s BDF method is used as 
the default because the system is typically stiff.

Four examples of PDEs are now presented that illustrate how users can inter-
face their problems with PDE_MOL. The examples are small and not indicative 
of the complexities that most practitioners will face in their applications.

Examples

Example 1

The normalized linear diffusion PDE, ut = uxx, 0 ≤ x ≤ 1, t > t0, is solved. The 
initial values are t0 = 0, u(x, t0) = u0 = 1. There is a “zero-flux” boundary con-
dition at x = 1, namely ux(1, t) = 0, (t > t0). The boundary value of u(0, t) is 
abruptly changed from u0 to the value u1 = 0.1. This transition is completed by 
t = tδ = 0.09.

Due to restrictions in the type of boundary conditions successfully processed by 
PDE_MOL, it is necessary to provide the derivative boundary value function γ′ 
at x = 0 and at x = 1. The function γ at x = 0 makes a smooth transition from 
the value u0 at t = t0 to the value u1 at t = tδ. The transition phase for γ′ is com-
puted by evaluating a cubic interpolating polynomial. For this purpose, the 

$ ,u x t ak i ki0� � =
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function subprogram SPVALUE, Chapter 3: Interpolation and Approximation is 
used. The interpolation is performed as a first step in the user-supplied proce-
dure f_bc. The function and derivative values γ(t0) = u0, γ′(t0) = 0, γ(tδ) = u1, 
and γ′(tδ) = 0, are used as input to routine CSINTERP to obtain the coefficients 
evaluated by SPVALUE. Notice that γ′(t) = 0, t > tδ. The evaluation routine 
SPVALUE will not yield this value so logic in the procedure f_bc assigns 
γ′(t) = 0, t > tδ.

FUNCTION f_ut,  npde,  x,  t,  u,  ux,  uxx

; Define the PDE

   ut  =  uxx

   RETURN, ut

END

PRO f_bc,  npde,  x,  t,  alpha, beta, gammap

COMMON ex1_pde, first, ppoly

   first  =  1

   alpha  =  FLTARR(npde)

   beta  =  FLTARR(npde)

   gammap  =  FLTARR(npde)

   delta  =  0.09

; Compute interpolant first time only

   IF (first EQ 1) THEN BEGIN

      first  =  0

      ppoly  =  CSINTERP([0.0,  delta],  [1.0,  0.1], $

         ileft = 1,  left = 0.0,  iright = 1,  right = 0.0)

   END

; Define the boundary conditions.   

   IF (x EQ 0.0) THEN  BEGIN

      alpha(0)  =  1.0

      beta(0)  =  0.0

      gammap(0)  =  0.0

; If in the boundary layer, compute nonzero gamma prime   

      IF (t LE delta) THEN gammap(0)  =  $

               SPVALUE(t,  ppoly,  xderiv  =  1)
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   END ELSE BEGIN

; These are for x  =  1

      alpha(0)  =  0.0

      beta(0)  =  1.0

      gammap(0)  =  0.0

   END

   RETURN

END

COMMON ex1_pde, first, ppoly

npde  =  1

nx  =  8

nstep  =  10

; Set breakpoints and initial conditions

xbreak  =  FINDGEN(nx)/(nx - 1)

y  =  FLTARR(npde, nx)

y(*)  =  1.0

; Initialize the solver

t  =  FINDGEN(nstep)/(nstep) + 0.1

t  =  [0.0, t*t]

; Solve the problem

res  =  PDE_MOL(t, y,  xbreak,  ’f_ut’,  ’f_bc’)

num = INDGEN(8) + 1

; Print results at current ti=ti+1

FOR i = 1, 10 DO BEGIN

   PRINT,  ’solution at t = ’,  t(i)

   PRINT, num, Format = "(8I7)"

   PM,  res(0,  *,  i), Format = "(8F7.4)"

END

solution at t =     0.0100000

      1      2      3      4      5      6      7      8

 0.9691 0.9972 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000

solution at t =     0.0400000

      1      2      3      4      5      6      7      8

 0.6247 0.8708 0.9624 0.9908 0.9981 0.9997 1.0000 1.0000
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solution at t =     0.0900000

      1      2      3      4      5      6      7      8

 0.1000 0.4602 0.7169 0.8671 0.9436 0.9781 0.9917 0.9951

solution at t =      0.160000

      1      2      3      4      5      6      7      8

 0.1000 0.3130 0.5071 0.6681 0.7893 0.8708 0.9168 0.9315

solution at t =      0.250000

      1      2      3      4      5      6      7      8

 0.1000 0.2567 0.4045 0.5354 0.6428 0.7224 0.7710 0.7874

solution at t =      0.360000

      1      2      3      4      5      6      7      8

 0.1000 0.2176 0.3292 0.4292 0.5125 0.5751 0.6139 0.6270

solution at t =      0.490000

      1      2      3      4      5      6      7      8

 0.1000 0.1852 0.2661 0.3386 0.3992 0.4448 0.4731 0.4827

solution at t =      0.640000

      1      2      3      4      5      6      7      8

 0.1000 0.1588 0.2147 0.2648 0.3066 0.3381 0.3577 0.3643

solution at t =      0.810000

      1      2      3      4      5      6      7      8

 0.1000 0.1387 0.1754 0.2083 0.2358 0.2565 0.2694 0.2738

solution at t =       1.00000

      1      2      3      4      5      6      7      8

 0.1000 0.1242 0.1472 0.1678 0.1850 0.1980 0.2060 0.2087

Example 2

Here, Problem C is solved from Sincovec and Madsen (1975). The equation is 
of diffusion-convection type with discontinuous coefficients. This problem illus-
trates a simple method for programming the evaluation routine for the 
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derivative, ut. Note that the weak discontinuities at x = 0.5 are not evaluated in 
the expression for ut. The problem is defined as

FUNCTION f_ut,  npde,  x,  t,  u,  ux,  uxx

; Define the PDE

   ut  =  FLTARR(npde)

   IF (x LE 0.5) THEN BEGIN

   d  =  5.0

   v  =  1000.0

   END ELSE BEGIN

   d  =  1.0

   v  =  1.0

   END

   ut(0)  =  d*uxx(0) - v*ux(0)

   RETURN, ut

END

PRO f_bc,  npde,  x,  t,  alpha, beta, gammap

; Define the Boundary Conditions
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   alpha  =  FLTARR(npde)

   beta  =  FLTARR(npde)

   gammap  =  FLTARR(npde)

   alpha(0)  =  1.0

   beta(0)  =  0.0

   gammap(0)  =  0.0

   RETURN

END

npde  =  1

nx  =  100

nstep  =  10

; Set breakpoints and initial conditions

xbreak  =  FINDGEN(nx)/(nx - 1)

y  =  FLTARR(npde, 100)

y(*)  =  0.0

y(0)  =  1.0

; Initialize the solver

mach  =  MACHINE(/FLOAT)

tol  =  SQRT(mach.MAX_REL_SPACE)

hinit  =  0.01*tol

PRINT, "tol = ", tol, " and hinit = ", hinit

t  =  [0.0, FINDGEN(nstep)/(nstep)  +  0.1]

; Solve the problem

res  =  PDE_MOL(t,  y,  xbreak,  ’f_ut’,  ’f_bc’, $

                  tolerance  =  tol,  hinit  =  hinit)

; Plot results at current ti=ti+1

PLOT, xbreak, res(0,*,10), psym = 3, yrange=[0 , 1.25], $

        title = "Solution at t = 1.0"
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Example 3

In this example, using PDE_MOL, the linear normalized diffusion PDE ut = uxx 
is solved but with an optional use that provides values of the derivatives, ux, of 
the initial data. Due to errors in the numerical derivatives computed by spline 
interpolation, more precise derivative values are required when the initial data is 
u(x, 0) = 1 + cos[(2n − 1)πx], n > 1. The boundary conditions are “zero flux” 
conditions 
ux(0, t) = ux(1, t) = 0 for t > 0. Note that the initial data is compatible with 
these end conditions since the derivative function 

vanishes at x = 0 and x = 1.

u x
du x

dx
n n xx ,

,
sin0

0
2 1 2 1� � � � � � � �= = − − −π π
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This optional usage signals that the derivative of the initial data is passed by the 
user.

FUNCTION f_ut,  npde,  x,  t,  u,  ux,  uxx

; Define the PDE

   ut  =  fltARR(npde)

   ut(0)  =  uxx(0)

   RETURN, ut

END

PRO f_bc,  npde,  x,  t,  alpha, beta, gammap

; Define the boundary conditions

   alpha  =  FLTARR(npde)

   beta  =  FLTARR(npde)

   gammap  =  FLTARR(npde)

   alpha(0)  =  0.0

   beta(0)  =  1.0

   gammap(0)  =  0.0

   RETURN

END

npde  =  1

nx  =  10

nstep  =  10

arg  =  9.0*!Pi

; Set breakpoints and initial conditions

xbreak  =  FINDGEN(nx)/(nx - 1)

y  =  FLTARR(npde,  nx)

y(0, *)  =  1.0 + COS(arg*xbreak)

di  =  y

di(0, *)  =  -arg*SIN(arg*xbreak)

; Initialize the solver

mach  =  MACHINE(/FLOAT)

tol = SQRT(mach.MAX_REL_SPACE)

t  =  [FINDGEN(nstep + 1)*(nstep*0.001)/(nstep)]

; Solve the problem
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res  =  PDE_MOL(t,  y,  xbreak,  ’f_ut’,  ’f_bc’, $

                Tolerance = tol,  Deriv_Init = di)

; Print results at every other ti=ti+1

FOR i = 2, 10, 2 DO BEGIN

   PRINT,  ’solution at t = ’,  t(i)

   PM,  res(0, *, i), Format = "(10F10.4)"

   PRINT,  ’derivative at t = ’,  t(i)

   PM,  di(0, *, i)

   PRINT

END                

solution at t =    0.00200000

    1.2329    0.7671    1.2329    0.7671    1.2329

    0.7671    1.2329    0.7671    1.2329    0.7671

derivative at t =    0.00200000

      0.00000  9.58505e-07  7.96148e-09  1.25302e-06

 -1.61002e-07  1.91968e-06 -1.60244e-06  3.85856e-06

 -4.83314e-06  2.02301e-06

solution at t =    0.00400000

    1.0537    0.9463    1.0537    0.9463    1.0537

    0.9463    1.0537    0.9463    1.0537    0.9463

derivative at t =    0.00400000

      0.00000  6.64098e-07 -5.12883e-07  8.55131e-07

 -6.11177e-07 -2.76893e-06  7.84288e-08  2.97113e-06

 -2.32777e-07  2.02301e-06

solution at t =    0.00600000

    1.0121    0.9879    1.0121    0.9879    1.0121

    0.9879    1.0121    0.9879    1.0121    0.9879

derivative at t =    0.00600000

      0.00000  7.42109e-07 -5.29244e-08 -1.98559e-07

 -1.19702e-06 -8.66795e-07  1.17180e-07  7.09625e-07

  4.31432e-07  2.02301e-06
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solution at t =    0.00800000

    1.0027    0.9973    1.0027    0.9973    1.0027

    0.9973    1.0027    0.9973    1.0027    0.9973

derivative at t =    0.00800000

      0.00000  3.56892e-07 -3.80790e-07 -9.99308e-07

 -1.96765e-07  7.72356e-07  8.50576e-08  1.11979e-07

  4.74838e-07  2.02301e-06

solution at t =     0.0100000

    1.0008    0.9992    1.0008    0.9992    1.0008

    0.9992    1.0008    0.9992    1.0008    0.9992

derivative at t =     0.0100000

      0.00000  2.40533e-07 -4.27171e-07 -1.25933e-06

  3.60702e-08  6.42627e-07 -1.00818e-07  2.08207e-07

  1.12973e-06  2.02301e-06

Example 4

In this example, consider the linear normalized hyperbolic PDE, utt = uxx, the 
“vibrating string” equation. This naturally leads to a system of first order PDEs. 
Define a new dependent variable ut = v. Then, vt = uxx is the second equation in 
the system. Take as initial data u(x, 0) = sin(πx) and 
ut(x, 0) = v(x, 0) = 0. The ends of the string are fixed so u(0, t) = u(1, t) = 
v(0, t) = v(1, t) = 0. The exact solution to this problem is u(x, t) = sin(πx) 
cos(πt). Residuals are computed at the output values of t for 0 < t ≤ 2. Output is 
obtained at 200 steps in increments of 0.01.

Even though the sample code PDE_MOL gives satisfactory results for this 
PDE, users should be aware that for nonlinear problems, “shocks” can develop 
in the solution. The appearance of shocks may cause the code to fail in unpre-
dictable ways. See Courant and Hilbert (1962), pp 488-490, for an introductory 
discussion of shocks in hyperbolic systems.

FUNCTION f_ut,  npde,  x,  t,  u,  ux,  uxx

; Define the PDE

   ut  =  FLTARR(npde)

   ut(0)  =  u(1)

   ut(1)  =  uxx(0)

   RETURN, ut
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END

PRO f_bc,  npde,  x,  t,  alpha, beta, gammap

; Define the boundary conditions

   alpha  =  FLTARR(npde)

   beta  =  FLTARR(npde)

   gammap  =  FLTARR(npde)

   alpha(0)  =  1

   alpha(1)  =  1

   beta(0)  =  0

   beta(1)  =  0

   gammap(0)  =  0

   gammap(1)  =  0

   RETURN

END

npde  =  2

nx  =  10

nstep  =  200

; Set breakpoints and initial conditions

xbreak  =  FINDGEN(nx)/(nx - 1)

y  =  FLTARR(npde,  nx)

y(0, *)  =  SIN(!Pi*xbreak)

y(1, *)  =  0

di  =  y

di(0, *)  =  !Pi*COS(!Pi*xbreak)

di(1, *)  =  0.0

; Initialize the solver

mach  =  MACHINE(/FLOAT)

tol  =  SQRT(mach.MAX_REL_SPACE)

t  =  [0.0, 0.01 + FINDGEN(nstep)*2.0/(nstep)]

; Solve the problem

u  =  PDE_MOL(t,  y,  xbreak,  ’f_ut’,  ’f_bc’, $

                Tolerance  =  tol,  Deriv_Init  =  di) 
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err  =  0.0

pde_error  =  FLTARR(nstep)

FOR j  =  1,  N_ELEMENTS(t) - 1 DO BEGIN

   FOR i = 0, nx - 1 DO BEGIN

      err = (err) > (u(0, i, j) - $

             SIN(!Pi*xbreak(i))*COS(!Pi*t(j)))

   END

END

PRINT, "Maximum error in u(x, t) = ", err

Maximum error in u(x, t) =   0.000626385
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POISSON2D Function 
Solves Poisson’s or Helmholtz’s equation on a two-dimensional rectangle using 
a fast Poisson solver based on the HODIE finite-difference scheme on a uni-
form mesh.

Usage

result = POISSON2D(rhs_pde, rhs_bc, coef_u, nx, ny, ax, bx, ay, by, bc_type) 

Input Parameters

rhs_pde — Scalar string specifying the name of the user-supplied function to 
evaluate the right-hand side of the partial differential equation at a scalar value 
x and scalar value y.

rhs_bc — Scalar string specifying the name of the user-supplied function to 
evaluate the right-hand side of the boundary conditions, on side side, at scalar 
value x and scalar value y. The value of side will be one of the following inte-
ger values:

coef_u — Value of the coefficient of u in the differential equation.

nx — Number of grid lines in the x-direction. nx must be at least 4. See the 
Discussion section for further restrictions on nx.

ny — Number of grid lines in the y-direction. ny must be at least 4. See the 
Discussion section for further restrictions on ny.

ax — The value of x along the left side of the domain.

bx — The value of x along the right side of the domain.

Integer Side

0 right side

1 bottom side

2 left side

3 top side
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ay — The value of y along the bottom of the domain.

by — The value of y along the top of the domain.

bc_type — One-dimensional array of size 4 indicating the type of boundary 
condition on each side of the domain or that the solution is periodic. The sides 
are numbered as follows:

The three possible boundary condition types are as follows:

Returned Value

result — Two-dimensional array of size nx by ny containing solution at the grid 
points.

Input Keywords

Double — If present and nonzero, double precision is used.

Order — Order of accuracy of the finite-difference approximation. It can be 
either 2 or 4. 

Default:  Order = 4 

Array Side           Location

bc_type(0) right x = bx

bc_type(1) bottom y = ay

bc_type(2) left x = ax

bc_type(3) top y = by

Type          Condition

bc_type(i) = 1 Dirichlet condition.  Value of u is given.

bc_type(i) = 2 Neuman condition.  Value of du/dx is given (on the right 
or left sides) or du/dy  (on the bottom or top of the 
domain).

bc_type(i) = 3 Periodic condition.
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Discussion

Let c = coef_u, ax = ax, bx = bx, ay = ay, by = by, nx = nx and ny = ny.

POISSON2D is based on the code HFFT2D by Boisvert (1984). It solves the 
equation

on the rectangular domain (ax, bx) × (ay, by) with a user-specified combination 
of Dirichlet (solution prescribed), Neumann (first-derivative prescribed), or peri-
odic boundary conditions. The sides are numbered clockwise, starting with the 
right side.

When c = 0 and only Neumann or periodic boundary conditions are prescribed, 
then any constant may be added to the solution to obtain another solution to the 
problem. In this case, the solution of minimum ∞-norm is returned.

The solution is computed using either a second-or fourth-order accurate finite-
difference approximation of the continuous equation. The resulting system of 
linear algebraic equations is solved using fast Fourier transform techniques. The 

∂
∂

∂
∂

2

2

2

2

u

x

u

y
cu p+ + =
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algorithm relies on the fact that nx − 1 is highly composite (the product of small 
primes). For details of the algorithm, see Boisvert (1984). If nx − 1 is highly 
composite then the execution time of POISSON2D is proportional to nxny log2 
nx. If evaluations of p(x, y) are inexpensive, then the difference in running time 
between Order = 2 and Order = 4 is small.

The grid spacing is the distance between the (uniformly spaced) grid lines. It is 
given by the formulas hx = (bx − ax)/(nx − 1) and hy = (by − ay)/(ny − 1). The 
grid spacings in the x and y directions must be the same, i.e., nx and ny must be 
such that hx is equal to hy. Also, as noted above, nx and ny must be at least 4. 
To increase the speed of the fast Fourier transform, nx − 1 should be the prod-
uct of small primes. Good choices are 17, 33, and 65.

If -coef_u is nearly equal to an eigenvalue of the Laplacian with homogeneous 
boundary conditions, then the computed solution might have large errors.

Example

In this example, the equation

with the boundary conditions

on the bottom side and

on the other three sides is solved. The domain is the rectangle 
[0, 1/4] × [0, 1/2]. The output of POISSON2D is a 17 × 33 table of values. The 
functions SPVALUE are used to print a different table of values.

∂
∂

∂
∂
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2

2
2 33 2 2 16

u
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u

y
u x y e x y+ + = − + + +sin� �

∂
∂
u

y
x y e x y= + + +2 2 3 2 3cos� �

m x y e x y= + + +sin )2 2 3� �
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FUNCTION rhs_pde,  x,  y

; Define the right side of the PDE

   f  =  (-2.0*SIN(x + 2.0*y) + 16.0*EXP(2.0*x + 3.0*y))   

   RETURN,  f

END

FUNCTION rhs_bc,  side,  x,  y

; Define the boundary conditions

   IF (side EQ 1) THEN $        

; Bottom side

   f  =  2.0*COS(x + 2.0*y) + 3.0*EXP(2.0*x + 3.0*y) $

   ELSE $                     

; All other sides, 0, 2, 3

   f  =  SIN(x + 2.0*y) + EXP(2.0*x + 3.0*y)

   RETURN,  f

END

PRO print_results, x, y, utable

   FOR j  =  0, 4 DO FOR i  =  0, 4 DO  $

     PRINT,  x(i),  y(j),  utable(i, j),  $

     ABS(utable(i,  j) - SIN(x(i) + 2.0*y(j)) - $

            EXP(2.0*x(i) + 3.0*y(j)))

END

nx  =  17

nxtable  =  5

ny  =  33

nytable  =  5

; Set rectangle size

ax  =  0.0

bx  =  0.25

ay  =  0.0

by  =  0.5

; Set boundary conditions

bc_type  =  [1, 2, 1, 1]
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; Coefficient of u

coef_u  =  3.0

; Solve the PDE

u  =  POISSON2D(’rhs_pde’, ’rhs_bc’, coef_u, nx, ny, ax, $

                bx, ay, by, bc_type)

; Set up for interpolation

xdata  =  ax + (bx - ax)*FINDGEN(nx)/(nx - 1)

ydata  =  ay + (by - ay)*FINDGEN(ny)/(ny - 1)

; Compute interpolant

sp  =  BSINTERP(xdata,  ydata,  u)

x  =  ax + (bx - ax)*FINDGEN(nxtable)/(nxtable - 1)

y  =  ay + (by - ay)*FINDGEN(nytable)/(nytable - 1)

utable  =  SPVALUE(x, y, sp)

; Print computed answer and absolute on nxtabl by nytabl grid

PRINT,"         X            Y            U         Error"

print_results, x, y, utable

         X            Y            U         Error

      0.00000      0.00000      1.00000      0.00000

    0.0625000      0.00000      1.19560  4.88758e-06

     0.125000      0.00000      1.40869  7.39098e-06

     0.187500      0.00000      1.64139  4.88758e-06

     0.250000      0.00000      1.89613  1.19209e-07

      0.00000     0.125000      1.70240  1.19209e-07

    0.0625000     0.125000      1.95615  6.55651e-06

     0.125000     0.125000      2.23451  9.53674e-06

     0.187500     0.125000      2.54067  6.67572e-06

     0.250000     0.125000      2.87830      0.00000

      0.00000     0.250000      2.59643  4.76837e-07

    0.0625000     0.250000      2.93217  9.05991e-06

     0.125000     0.250000      3.30337  1.31130e-05

     0.187500     0.250000      3.71482  8.82149e-06

     0.250000     0.250000      4.17198  2.38419e-07

      0.00000     0.375000      3.76186  2.38419e-07

    0.0625000     0.375000      4.21634  9.05991e-06
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     0.125000     0.375000      4.72261  1.31130e-05

     0.187500     0.375000      5.28776  8.58307e-06

     0.250000     0.375000      5.91989  4.76837e-07

      0.00000     0.500000      5.32316  4.76837e-07

    0.0625000     0.500000      5.95199      0.00000

     0.125000     0.500000      6.65687  4.76837e-07

     0.187500     0.500000      7.44826      0.00000

     0.250000     0.500000      8.33804  1.43051e-06
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CHAPTER

6

Transforms

Contents of Chapter 
Real or complex FFT .....................  FFTCOMP Function

Real or complex FFT 
initialization .........................................  FFTINIT Function

Compute discrete 
convolution ....................................CONVOL1D Function

Compute discrete correlation ............ CORR1D Function

Approximate inverse Laplace transform 
of a complex function .................LAPLACE_INV Function

Introduction 

Fast Fourier Transforms

A fast Fourier transform (FFT) is simply a discrete Fourier transform that is 
computed efficiently. Basically, the straightforward method for computing the 
Fourier transform takes approximately n2 operations, where n is the number of 
points in the transform, while the FFT (which computes the same values) takes 
approximately nlogn operations. The algorithms in this chapter are modeled 
after the Cooley-Tukey (1965) algorithm. Hence, these functions are most effi-
cient for integers that are highly composite, that is, integers that are a product of 
the small primes 2, 3, and 5. 
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For the function FFTCOMP, there is a corresponding initialization function. Use 
this function only when repeatedly transforming one-dimensional sequences of 
the same data type and length. In this situation, the initialization function com-
putes the initial setup once; subsequently, the user calls the main function with 
the appropriate keyword. This may result in substantial computational savings. 
For more information on the use of these functions, consult the documentation 
under the appropriate function name. In addition to the one-dimensional trans-
formation described above, the function FFTCOMP also can be used to compute 
a complex two-dimensional FFT and its inverse.

Continuous Versus Discrete Fourier Transform 

There is a close connection between the discrete Fourier transform and the con-
tinuous Fourier transform. The continuous Fourier transform is defined by 
Brigham (1974) as follows:

Begin by making the following approximation:

If the last integral approximated using the rectangle rule with spacing h = T / n, 
the result is given below:

Finally, setting ω = j / T for j = 0, ..., n – 1 yields

f̂ ω( ) Ff( ) ω( ) f t( )e 2πiωt– td
∞–

∞

∫= =

f̂ ω( ) f t( )e
2π iωt–

td
T 2⁄–

T 2⁄∫≈

f t T 2⁄–( )e 2π iω t T 2⁄–( )– td
0

T∫=

eπiωT f t T 2⁄–( )e 2πiω t– td
0

T∫=

f̂ ω( ) eπiωTh e 2πiωkh– f kh T 2⁄–( )

k 0=

n 1–

∑≈

f̂ j T⁄( ) eπijh e 2πi j k n⁄( )– f kh T 2⁄–( )

k 0=

n 1–

∑≈ 1– jh e 2π ij k n⁄( )– f k
h

k 0=

n 1–

∑=
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where the vector f h = (f (–T / 2), ..., f ((n – 1) h – T / 2)). Thus, after scaling 
the components by (–1) jh, the discrete Fourier transform as computed in FFT-
COMP (with input f h) is related to an approximation of the continuous Fourier 
transform by the above formula.

If the function f is expressed as a function, then the continuous Fourier 
transform 

 

can be approximated using the PV-WAVE:IMSL Mathematics function 
INTFCN to compute a Fourier transform as described on page 193 in Chapter 4. 

FFTCOMP Function 
Computes the discrete Fourier transform of a real or complex sequence. Using 
keywords, a real-to-complex transform or a two-dimensional complex Fourier 
transform can be computed.

Usage

result = FFTCOMP(a)

Input Parameters

a — Array containing the periodic sequence.

Returned Value

result — The transformed sequence. If A is one-dimensional, the type of A 
determines whether the real or complex transform is computed, where A is array 
a. If A is two-dimensional, the complex transform is always computed.

Input Keywords

Cosine — If present and nonzero, then FFTCOMP computes the discrete Fou-
rier cosine transformation of an even sequence 

Sine — If present and nonzero, then FFTCOMP computes the discrete Fourier 
sine transformation of an odd sequence 

Double — If present and nonzero, double precision is used.

f̂
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Complex — If present and nonzero, the complex transform is computed. If A is 
complex, this keyword is not required to ensure that a complex transform is 
computed. If A is real, it is promoted to complex internally.

Backward — If present and nonzero, the backward transform is computed. See 
the Discussion section below for more details on this option.

Init_Params — Array containing parameters used when computing a one-
dimensional FFT. If FFTCOMP is used repeatedly with arrays of the same 
length and data type, it is more efficient to compute these parameters only once 
with a call to function FFTINIT.

Discussion

The default action of the function FFTCOMP is to compute the FFT of an array 
A, with the type of FFT performed dependent upon the data type of the input 
array A. (If A is a one-dimensional real array, the real FFT is computed; if A is a 
one-dimensional complex array, the complex FFT is computed; and if A is a 
two-dimensional real or complex array, the complex FFT is computed.) If the 
complex FFT of a one-dimensional real array is desired, keyword Complex 
should be specified. The keywords Sine and Cosine allow FFTCOMP to be used 
to compute the discrete Fourier sine or cosine transformation of a one dimen-
sional real array. The remainder of this section is divided into separate 
discussions of the various uses of FFTCOMP.

Case 1: One-dimensional Real FFT

If A is one-dimensional and real, the function FFTCOMP computes the discrete 
Fourier transform of a real array of length n = N_ELEMENTS (a). The method 
used is a variant of the Cooley-Tukey algorithm, which is most efficient when n 
is a product of small prime factors. If n satisfies this condition, then the compu-
tational effort is proportional to nlogn.
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By default, FFTCOMP computes the forward transform. If n is even, the for-
ward transform is as follows: 

If n is odd, qm is defined as above for m from 1 to (n – 1) / 2.

Let f be a real-valued function of time. Suppose f is sampled at n equally 
spaced time intervals of length ∆ seconds starting at time t0:

pi = f(t0 + i∆) i = 0, 1, ..., n – 1

Assume that n is odd for the remainder of the discussion for the case in which 
A is real. Function FFTCOMP treats this sequence as if it were periodic of 
period n. In particular, it assumes that f(t0) = f(t0 + n∆). Hence, the period of the 
function is assumed to be T = n∆. The above transform is inverted for the 
following:

This formula can be interpreted in the following manner: The coefficients q pro-
duced by FFTCOMP determine an interpolating trigonometric polynomial to the 
data. That is, if the equations are defined as 

q2m 1– pk
2πkm

n
--------------cos

k 0=

n 1–

∑=

q2m pk
2πkm

n
--------------sin

k 0=

n 1–

∑–=

q0 pk

n 1–

∑=

pm
1
n
--- q0 2 q2k 1+

2πkm
n

--------------cos

k 0=

n 3–( ) 2⁄

∑ 2 q2k 2+
2πkm

n
--------------sin

k 0=

n 3–( ) 2⁄

∑–+=

g t( )
1
n
--- q0 2 q2k 1+

2πk t t0–( )
n∆

--------------------------cos

k 0=

n 3–( ) 2⁄

∑ 2 q2k 2+
2πk t t0–( )

n∆
--------------------------sin

k 0=

n 3–( ) 2⁄

∑–+=

g t( ) 1
n
--- q0 2 q2k 1+

2πk t t0–( )
T

--------------------------cos

k 0=

n 3–( ) 2⁄

∑ 2 q2k 2+
2πk t t0–( )

T
--------------------------sin

k 0=

n 3–( ) 2⁄

∑–+=



276  Chapter 6: Transforms PV-WAVE:IMSL Mathematics Reference

then the result is as follows:

f(t0 + (i – 1) ∆ ) = g(t0 + (i – 1) ∆ )

Now suppose the dominant frequencies are to be obtained. Form the array P of 
length (n + 1) / 2 as follows:

These numbers correspond to the energy in the spectrum of the signal. In partic-
ular, Pk corresponds to the energy level at the following frequency: 

Furthermore, note that there are only 

resolvable frequencies when n observations are taken. This is related to the 
Nyquist phenomenon, which is induced by discrete sampling of a continuous 
signal. Similar relations hold for the case when n is even.

If keyword Backward is specified, the backward transform is computed. If n is 
even, the backward transform is as follows:

If n is odd, the following is true:

The backward Fourier transform is the unnormalized inverse of the forward 
Fourier transform.

The FFTCOMP function is based on the real FFT in FFTPACK, which was 
developed by Paul Swarztrauber at the National Center for Atmospheric 
Research.
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Case 2: One-dimensional Complex FFT

If A is one-dimensional and complex, function FFTCOMP computes the discrete 
Fourier transform of a complex array of size n = N_ELEMENTS (a). The 
method used is a variant of the Cooley Tukey algorithm, which is most effi-
cient when n is a product of small prime factors. If n satisfies this condition, the 
computational effort is proportional to nlogn.

By default, FFTCOMP computes the forward transform as in the equation 
below.

Note, the Fourier transform can be inverted as follows:

This formula reveals the fact that, after properly normalizing the Fourier coeffi-
cients, you have coefficients for a trigonometric interpolating polynomial to the 
data. 

If keyword Backward is used, the following computation is performed:

Furthermore, the relation between the forward and backward transforms is that 
they are unnormalized inverses of each other. In other words, the following 
code fragment begins with an array p and concludes with an array p2 = np:

q = FFTCOMP(p)

p2 = FFTCOMP(q, /Backward)

Case 3: Two-dimensional FFT

If A is two-dimensional and real or complex, function FFTCOMP computes the 
discrete Fourier transform of a two-dimensional complex array of size n x m 
where n = N_ELEMENTS (a (*, 0)) and m = N_ELEMENTS (a (0, *)). The 
method used is a variant of the Cooley-Tukey algorithm, which is most efficient 
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when both n and m are a product of small prime factors. If n and m satisfy this 
condition, then the computational effort is proportional to nmlognm.

By default, given a two-dimensional array, FFTCOMP computes the forward 
transform as in the following equation:

Note, the Fourier transform can be inverted as follows:

This formula reveals the fact that, after properly normalizing the Fourier coeffi-
cients, you have the coefficients for a trigonometric interpolating polynomial to 
the data.

If keyword Backward is used, the following computation is performed:

Case 4: Cosine Transform of a Real Sequence

If the keyword Cosine is present and nonzero, the function FFTCOMP com-
putes the discrete Fourier cosine transform of a real vector of size N. The 
method used is a variant of the Cooley-Tukey algorithm, which is most efficient 
when N – 1 is a product of small prime factors. If N satisfies this condition, 
then the computational effort is proportional to N logN. Specifically, given an 
N-vector p, FFTCOMP returns in q

where p = array a and q = result. 

Finally, note that the Fourier cosine transform is its own (unnormalized) 
inverse. 
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Case 5: Sine Transform of a Real Sequence

If the keyword Sine is present and nonzero, the function FFTCOMP computes 
the discrete Fourier sine transform of a real vector of size N. The method used 
is a variant of the Cooley-Tukey algorithm, which is most efficient when N + 1 
is a product of small prime factors. If N satisfies this condition, then the compu-
tational effort is proportional to N logN. Specifically, given an N-vector p, 
FFTCOMP returns in q

where p = array a and q = result. 

Finally, note that the Fourier sine transform is its own (unnormalized) inverse. 

Example 1
In this example, a pure cosine wave is used as a data array, and its Fourier 
series is recovered. The Fourier series is an array with all components zero 
except at the appropriate frequency where it has an n/2.

n = 7

; Fill up the data array with a pure cosine wave.

p = COS(FINDGEN(n) * 2 * !Pi/n)

PM, p

1.00000

0.623490

-0.222521

-0.900969

-0.900969

-0.222521

0.623490

q = FFTCOMP(p)

; Call FFTCOMP to compute the FFT.

PM, q, Format = ’(f8.3)’

; Output results.

 0.000

 3.500

 0.000

 -0.000
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 -0.000

 0.000

 -0.000

Example 2: Resolving Dominant Frequencies
The following procedure demonstrates how the FFT can be used to resolve the 
dominant frequency of a signal. Call FFTCOMP with a data vector of length n 
= 15, filled with pure, exponential signals of increasing frequency and decreas-
ing strength. Using the computed FFT, the relative strength of the frequencies is 
resolved. It is important to note that for an array of length n, at most 
(n + 1)/2 frequencies can be resolved using the computed FFT. 

PRO power_spectrum

n = 15

; Define the length of the signal.

num_freq = n/2 + (n MOD 2)

z = COMPLEX(0, FINDGEN(n) * 2 * !Pi/n)

p = COMPLEXARR(n)

FOR i = 0, num_freq - 1 DO $

p = p + EXP(i * z)/(i + 1)

; Fill up the data array.

q = FFTCOMP(p)

; Compute the FFT.

power = FLTARR(num_freq)

IF ((n MOD 2) EQ 0) THEN BEGIN

power(0) = ABS(q(0))^2

FOR i = 1,(num_freq - 2) DO $

power(i) = q(i) * CONJ(q(i)) + $

q(n-i-1) * CONJ(q(n-i-1))

power(num_freq - 1) = q(num_freq - 1) * $

CONJ(q(num_freq - 1))

END

; Determine the strengths of the frequencies. The method is
; dependent upon whether n is even or odd.

IF ((n MOD 2) EQ 1) THEN BEGIN

FOR i = 1,(num_freq - 1) DO power(i) = $

q(i)^2 + q(n - i)^2

power(0) = q(0)^2

END

PRINT, ’   frequency  strength’ &$
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PRINT, ’   ---------  --------’ &$

FOR i = 0,7 DO PRINT, i, power(i)

; Display frequencies and strengths.

END

frequency  strength

---------  --------

    0      225.000

    1      56.2500

    2      25.0000

    3      14.0625

    4      9.00000

    5      6.25000

    6      4.59183

    7      3.51562

Example 3: Computing a Two-dimensional FFT

In this example, the forward transform of a two-dimensional matrix followed by 
the backward transform is computed. Notice that the process of computing the 
forward transform followed by the backward transform multiplies the entries of 
the original matrix by the product of the lengths of the two dimensions.

n = 4

m = 5

p = COMPLEXARR(n, m)

FOR i = 0, n - 1 DO BEGIN &$

z = COMPLEX(0, 2 * i * 2 * !Pi/n) &$

FOR j = 0, m - 1 DO BEGIN &$

w = COMPLEX(0, 5 * j * 2 * !Pi/m) &$

p(i, j) = EXP(z) * EXP(w) &$

ENDFOR &$

ENDFOR

q = FFTCOMP(p)

p2 = FFTCOMP(q, /Backward)

format = "(4(’(’,f6.2,’,’,f5.2,’)’,2x))"

PM, p, Format = format, Title = ’p’

p

( 1.0, 0.0)( 1.0, 0.0)( 1.0, 0.0)( 1.0, 0.0)

( 1.0, 0.0)(-1.0,-0.0)(-1.0,-0.0)(-1.0,-0.0)

(-1.0,-0.0)(-1.0,-0.0)( 1.0, 0.0)( 1.0, 0.0)

( 1.0, 0.0)( 1.0, 0.0)( 1.0, 0.0)(-1.0,-0.0)
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(-1.0,-0.0)(-1.0,-0.0)(-1.0,-0.0)(-1.0,-0.0)

PM, q, Format = format, Title = ’q = FFTCOMP(p)’

q = FFTCOMP(p)

( 0.0, 0.0)(-0.0, 0.0)( 0.0, 0.0)(-0.0, 0.0)

( 0.0, 0.0)(-0.0,-0.0)( 0.0,-0.0)( 0.0,-0.0)

( 0.0, 0.0)(-0.0, 0.0)(20.0, 0.0)(-0.0,-0.0)

(-0.0,-0.0)( 0.0,-0.0)( 0.0,-0.0)( 0.0,-0.0)

( 0.0, 0.0)(-0.0, 0.0)(-0.0,-0.0)(-0.0,-0.0)

PM, p2, Format = format, Title = ’p2 = FFTCOMP(q, /Backward)’

p2 = FFTCOMP(q, /Backward)

( 20., 0.)( 20., 0.)( 20., 0.)( 20., 0.)

( 20., 0.)(-20.,-0.)(-20.,-0.)(-20.,-0.)

(-20.,-0.)(-20.,-0.)( 20., 0.)( 20., 0.)

( 20., 0.)( 20., 0.)( 20., 0.)(-20.,-0.)

(-20.,-0.)(-20.,-0.)(-20.,-0.)(-20.,-0.)

FFTINIT Function 
Computes the parameters for a one-dimensional FFT to be used in function
FFTCOMP with keyword Init_Params.

Usage

result = FFTINIT(n)

Input Parameters 

n — Length of the sequence to be transformed.

Returned Value 

result — A one-dimensional array of length 2n + 15 that can then be used by 
FFTCOMP when the optional parameter Init_Params is specified.

Input Keywords

Double — If present and nonzero, double precision is used and the returned 
array is double precision. This keyword does not have an effect if the initializa-
tion is being computed for a complex FFT.
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Complex — If present and nonzero, the parameters for a complex transform are 
computed.

Sine — If present and nonzero, then parameters for a discrete Fourier cosine 
transformation are returned. See keyword Sine in function FFTCOMP.

Cosine — If present and nonzero, then parameters for a discrete Fourier cosine 
transformation are returned. See keyword Sine in function FFTCOMP.

Discussion 

Function FFTINIT should be used when many calls are to be made to function 
FFTCOMP without changing the data type of the array and the length of the 
sequence. The default action of FFTINIT is to compute the parameters neces-
sary for a real FFT. If parameters for a complex FFT are needed, keyword 
Complex should be specified.

The FFTINIT function is based on the routines RFFTI and RFFTI in 
FFTPACK, which was developed by Paul Swarztrauber at the National Center 
for Atmospheric Research.

Example

In this example, two distinct, real FFTs are computed by calling FFTINIT once, 
then calling function FFTCOMP twice.

n = 7

; Define the length of the signals.

init_params = FFTINIT(7)

; Initialize the parameters by calling FFTINIT.

FOR j = 0, 2 DO BEGIN $

p = COS(j * FINDGEN(n) * 2 * !Pi/n) &$

q = FFTCOMP(p, Init_Params = init_params)&$

PM, ’p’, ’q’, &$

Format = ’(7x, a1, 10x, a1)’ &$

FOR i = 0, n - 1 DO PM, p(i), q(i), &$

Format = ’(f10.5, f10.2)’ &$

ENDFOR

; For each pass through the loop, compute a real FFT of an array of
; length n and output both the original signal and the computed FFT.

 p q

 1.00000  7.00

 1.00000  0.00
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 1.00000  0.00

 1.00000  0.00

 1.00000  0.00

 1.00000  -0.00

 1.00000  0.00

 p q

 1.00000  0.00

 0.62349  3.50

 -0.22252  0.00

 -0.90097  -0.00

 -0.90097  -0.00

 -0.22252  0.00

 0.62349  -0.00

 p q

 1.00000  -0.00

 -0.22252  0.00

 -0.90097  -0.00

 0.62349  3.50

 0.62349  -0.00

 -0.90097  0.00

 -0.22252  0.00
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CONVOL1D Function 
Computes the discrete convolution of two one dimensional arrays.

Usage

result = CONVOL1D(x, y)

Input Parameters

x — One-dimensional array.

y — One-dimensional array.

Returned Value

result — A one-dimensional array containing the discrete convolution of x and 
y. 

Input Keywords 

Direct — If present and nonzero, causes the computations to be done by the 
direct method instead of the FFT method regardless of the size of the vectors 
passed in. 

Periodic — If present and nonzero, then a circular convolution is computed. 

Discussion

The function CONVOL1D computes the discrete convolution of two sequences 
x and y. 

Let nx be the length of x, and ny denote the length of y. If keyword Periodic is 
set, then nz = max{nx, ny}, otherwise nz is set to the smallest whole number, 
nz ≥ nx + ny – 1, of the form 

 nz 2α3β5γ=    : α β, γ  nonnegative integers.,
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The arrays x and y are then zero-padded to a length nz. Then, we compute

where the index on x is interpreted as a nonnegative number between 0 and 
nz – 1.

The technique used to compute the zi’s is based on the fact that the (complex 
discrete) Fourier transform maps convolution into multiplication. Thus, the Fou-
rier transform of z is given by

where the following equation is true.

The technique used here to compute the convolution is to take the discrete Fou-
rier transform of x and y, multiply the results together component-wise, and then 
take the inverse transform of this product. It is very important to make sure that 
nz is the product of small primes if Periodic is set. If nz is a product of small 
primes, then the computational effort will be proportional to nz log (nz). If Peri-
odic is not set, then nz is chosen to be a product of small primes.

We point out that if x and y are not complex, then no complex transforms of x 
or y are taken, since a real transforms can simulate the complex transform 
above. Such a strategy is six times faster and requires less space than when 
using the complex transform.

Example 

In this example, CONVOL1D is used to compute simple moving-average digital 
filter plots of 5-point and 25-point moving average filters of noisy data are pro-
duced. Results are shown in figures Figure 6-1 and Figure 6-2.

PRO Convol1d_ex1

RANDOMOPT, SET = 1234579L

; Set the random number seed.

ny = 100

zi xi j– yj

j 0=

nz 1–

∑=

ẑ n( ) x̂ n( )ŷ n( )=

ẑ n( ) zme
2πimn nz⁄–

m 0=

nz 1–

∑=
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t = FINDGEN(ny)/(ny-1)

y = SIN(2*!PI*t) + $
.5*RANDOM(ny, /Uniform) -.25

; Define a 1-period sine wave with added noise.

FOR nfltr = 5, 25, 20 DO BEGIN

nfltr_str = strcompress(nfltr,/Remove_All)

fltr = fltarr(nfltr)

fltr(*) = 1./nfltr

; Define the NFLTR-point moving average array.

z = CONVOL1D(fltr, y, /Periodic)

; Convolve the filter and the signal, using the keyword Periodic.

PLOT, y, LINESTYLE = 1, TITLE = $
nfltr_str+’-point Moving Average’

OPLOT, shift(z, -nfltr/2)

ENDFOR

END

Figure 6-1  5-point moving average.
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Figure 6-2  25-point moving average.

CORR1D Function 
Compute the discrete correlation of two one-dimensional arrays.

Usage

result = CORR1D(x[, y])

Input Parameters

x— One-dimensional array.

y— (Optional) One-dimensional array.

Returned Value

result — A one-dimensional array containing the discrete convolution of x and 
x, or x and y if y is supplied.
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Input Keywords

Periodic — If present and nonzero, then the input data is periodic 

Discussion

The function CORR1D computes the discrete correlation of two sequences x 
and y. If only one argument is passed, then CORR1D computes the discrete cor-
relation of x and x. 

More precisely, let n be the length of x and y. If Periodic is set, then nz = n, 
otherwise nz is set to the smallest whole number, nz ≥ 2n – 1 , of the form

 

The arrays x and y are then zero-padded to a length nz. Then, we compute

where the index on x is interpreted as a positive number between 0 and nz – 1. 

The technique used to compute the zi’s is based on the fact that the (complex 
discrete) Fourier transform maps correlation into multiplication. Thus, the Fou-
rier transform of z is given by 

where the following equation is true.

Thus, the technique used here to compute the correlation is to take the discrete 
Fourier transform of x and the conjugate of the discrete Fourier transform of y, 
multiply the results together component-wise, and then take the inverse trans-
form of this product. It is very important to make sure that nz is the product of 
small primes if Periodic is selected. If nz is the product of small primes, then the 
computational effort will be proportional to nzlog(nz). If Periodic is not set, then 
a good value is chosen for nz so that the Fourier transforms are efficient and nz 
≥ 2n – 1 . This will mean that both vectors may be padded with zeros.

nz 2α3β5γ=    : α β, γ  nonnegative integers.,

zi xi j+ yj

j 0=

nz 1–

∑=

ẑj x̂jyj
ˆ=

ẑj zme
2πimn nz⁄–

m 0=

nz 1–

∑=
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We point out that if x and y are not complex, then no complex transforms of x 
or y are taken, since a real transforms can simulate the complex transform 
above. Such a strategy is six times faster and requires less space than when 
using the complex transform.

Example 

In this example, we compute a periodic correlation between two distinct signals 
x and y. We have 100 equally spaced points on the interval [0, 2π] and 
f1(x) = sin (x). We define x and y as follows: 

Note that the maximum value of z (the correlation of x with y) occurs at i = 25, 
which corresponds to the offset.

n = 100

t = 2*!DPI*FINDGEN(n)/(n-1)

x = SIN(t)

y = SIN(t+!dpi/2)

; Define the signals and compute the norms of the signals.

xnorm = NORM(x)

ynorm = NORM(y)

z = CORR1D(x, y, /Periodic)/(xnorm*ynorm)

; Compute the periodic correlation, and find the largest normalized
; element of the result.

max_z = (SORT(z))(N_ELEMENTS(z)-1)

PRINT, max_z, z(max_z)

25  1.00

xi f1
2πi

n 1–
------------

 
 
 

i 0 … n 1–, ,= =

yi f1
2πi

n 1–
------------

π
2
---+

 
 
 

i 0 … n 1.–, ,= =
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LAPLACE_INV Function 
Computes the inverse Laplace transform of a complex function.

Usage

result = LAPLACE_INV(f, sigma0, t)

Input Parameters

f — Scalar string specifying the user-supplied function for which the inverse 
Laplace transform will be computed.

sigma0 — An estimate for the maximum of the real parts of the singularities of 
f. If unknown, set sigma0 = 0.0.

t — One-dimensional array of size n containing the points at which the inverse 
Laplace transform is desired.

Returned Value

result — One-dimensional array of length n whose i-th component contains the 
approximate value of the inverse Laplace transform at the point t(i).

Input Keywords

Double — If present and nonzero, double precision is used.

Pseudo_Acc — The required absolute uniform pseudo accuracy for the coeffi-
cients and inverse Laplace transform values.

Default: Pseudo_Acc = SQRT(ε), where ε is machine epsilon

Sigma — The first parameter of the Laguerre expansion. If Sigma is not greater 
than sigma0, it is reset to sigma0+ 0.7.

Default: Sigma = sigma0+ 0.7

Bvalue — The second parameter of the Laguerre expansion. If Bvalue is less 
than 2.0*(Sigma − sigma0), it is reset to 2.5*(Sigma − sigma0).

Default: Bvalue = 2.5*(Sigma − sigma0)



292  Chapter 6: Transforms PV-WAVE:IMSL Mathematics Reference

Mtop — An upper limit on the number of coefficients to be computed in the 
Laguerre expansion. Keyword Mtop must be a multiple of four.

Default: Mtop = 1024

Output Keywords

Err_Est — Named variable into which an overall estimate of the pseudo error, 
Disc_Est + Trunc_Err + Cond_Err is stored. See the Discussion section for 
details.

Disc_Err — Named variable into which the estimate of the pseudo discretiza-
tion error is stored.

Trunc_Err — Named variable into which the estimate of the pseudo truncation 
error is stored.

Cond_Err — Named variable into which the estimate of the pseudo condition 
error on the basis of minimal noise levels in the function values is stored.

K — Named variable into which the coefficient of the decay function is stored. 
See the Discussion section for details.

R — Named variable into which the base of the decay function is stored. See 
the Discussion section for details.

Big_Coef_Log — Named variable into which the logarithm of the largest coef-
ficient in the decay function is stored.  See the Discussion section for details.

Small_Coef_Log — Named variable into which the logarithm of the smallest 
nonzero coefficient in the decay function is stored.  See the Discussion section 
for details.

Indicators — Named variable into which an one-dimensional array of length n 
containing the overflow/underflow indicators for the computed approximate 
inverse Laplace transform is stored. For the i-th point at which the transform is 
computed, Indicators(i) signifies the following:

Indicators(i) meaning

1 Normal termination.

2 The value of the inverse Laplace transform is too 
large to be representable. This component of the 
result is set to NaN.
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Discussion

The function LAPLACE_INV computes the inverse Laplace transform of a 
complex-valued function. Recall that if f is a function that vanishes on the nega-
tive real axis, then the Laplace transform of f is defined by

It is assumed that for some value of s the integrand is absolutely integrable.

The computation of the inverse Laplace transform is based on a modification of 
Weeks’ method (see Weeks (1966)) due to Garbow et al. (1988). This method is 
suitable when f has continuous derivatives of all orders on [0, ∞). In particular, 
given a complex-valued function F(s) = L[f] (s), f can be expanded in a 
Laguerre series whose coefficients are determined by F. This is fully described 
in Garbow et al. (1988) and Lyness and Giunta (1986).

The algorithm attempts to return approximations g(t) to f(t) satisfying

where ε = Pseudo_Acc and σ = Sigma > sigma0. The expression on the left is 
called the pseudo error. An estimate of the pseudo error is available in Err_Est.

The first step in the method is to transform F to φ where

3 The value of the inverse Laplace transform is found 
to be too small to be representable. This component 
of the result is set to 0.0.

4 The value of the inverse Laplace transform is esti-
mated to be too large, even before the series 
expansion, to be representable. This component of 
the result is set to NaN.

5 The value of the inverse Laplace transform is esti-
mated to be too small, even before the series 
expansion, to be representable. This component of 
the result is set to 0.0.

Indicators(i) meaning

L f s e f x dxsx� � � �= � −∞
0

g t f t

e t

� � � �−
<σ ε
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Then, if f is smooth, it is known that φ is analytic in the unit disc of the com-
plex plane and hence has a Taylor series expansion

which converges for all z whose absolute value is less than the radius of conver-
gence Rc. This number is estimated in the output keyword R. Using the output 
keyword K, the smallest number K is estimated which satisfies

for all R < Rc.

The coefficients of the Taylor series for φ can be used to expand f in a Laguerre 
series

Example 1

This example computes the inverse Laplace transform of the function (s – 1)−2, 
and prints the computed approximation, true transform value, and difference at 
five points. The correct inverse transform is xex. From Abramowitz and Stegun 
(1964).

FUNCTION fcn,   x

; Return 1/(s - 1)**2

φ σz
b

z
F

b

z

b� � =
− −

− +
1 1 2

( )

φ z a zs
s

s� � = ∑
=

∞

0

| |a
K

R
s s

<

f t e a e L btt
s

s

bt
s� � � �= ∑

=

∞ −σ

0

2/
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   one  =  COMPLEX(1.0,  0.0)

   f  =  one/((x - one)*(x - 1))

   RETURN, f

END

n  =  5

; Initialize t and compute inverse.

t  =  FINDGEN(n) + 0.5

l_inverse  =  LAPLACE_INV(’fcn’,  1.5,  t)

; Compute true inverse, relative difference.

true_inverse = t*EXP(t)

relative_diff = ABS((l_inverse - true_inverse) / true_inverse)

PM, [[t(0:*)],  [l_inverse(0:*)],  [true_inverse(0:*)],  $

    [relative_diff(0:*)]],  $

    Title  =  “         t          f_inv        true       
diff”

         t          f_inv        true       diff

     0.500000     0.824348     0.824361  1.48223e-05

      1.50000      6.72247      6.72253  1.01432e-05

      2.50000      30.4562      30.4562  2.50504e-07

      3.50000      115.906      115.904  1.84310e-05

      4.50000      405.053      405.077  5.90648e-05

Example 2

This example computes the inverse Laplace transform of the function e−1/s/s, 
and prints the computed approximation, true transform value, and difference at 
five points. Additionally, the inverse is returned, and a required accuracy for the 
inverse transform values is specified. The correct inverse transform is

FUNCTION fcn, x

; Return (1/s)(exp(-1/s)

J x0 2� �
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   one  =  COMPLEX(1.0,  0.0)

   s_inverse = one / x

   f  =  s_inverse*EXP(-1*(s_inverse))

   RETURN, f

END

n  =  5

; Initialize t and compute inverse.

t  =  FINDGEN(n) + 0.5

l_inverse  =  LAPLACE_INV(’fcn’, 0.0, t, $

           Pseudo_Acc = 1.0e-6, Indicator = indicator)

; Compute true inverse, relative difference.

true_inverse = FLOAT(BESSJ(0, 2.0*SQRT(t)))

relative_diff = ABS((l_inverse - true_inverse) / true_inverse)

FOR i  =  0, 4 DO  $

   IF (indicator(i) EQ 0) THEN  $

       PM, t(i), l_inverse(i), true_inverse(i), $

           relative_diff(i), $ 

  Title  =  ’        t          f_inv        true       
diff’  $

   ELSE  $

       PRINT, ’Overflow or underflow noted.’

        t          f_inv        true       diff

     0.500000     0.559134     0.559134  1.06602e-07

        t          f_inv        true       diff

      1.50000   -0.0229669   -0.0229670  4.21725e-06

        t          f_inv        true       diff

      2.50000    -0.310045    -0.310045  9.61226e-08

        t          f_inv        true       diff

      3.50000    -0.401115    -0.401115  2.22896e-07

        t          f_inv        true       diff

      4.50000    -0.370335    -0.370336  4.02369e-07
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CHAPTER

7

Nonlinear Equations

Contents of Chapter 

Zeros of a Polynomial

Real or complex coefficients .........  ZEROPOLY Function

Zeros of a Function

Real zeros of a function ..................  ZEROFCN Function

Root of a System of Equations

Powell’s hybrid method....................  ZEROSYS Function

Introduction 

Zeros of a Polynomial 

A polynomial function of degree n can be expressed as follows:

p(z) = anzn + an–1zn – 1 + ... + a1z + a0

where an ≠ 0. Function ZEROPOLY finds zeros of a polynomial with real or 
complex coefficients using either the companion method or the Jenkins-Traub 
three-stage algorithm.
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Zeros of a Function

Function ZEROFCN uses Müller’s method to find the real zeros of a real-val-
ued function.

Root of System of Equations 

A system of equations can be stated as follows:

fi(x) = 0, for i = 0, 1, ..., n – 1

where x ∈ Rn , and fi : R
n → R .

Function ZEROSYS uses a modified hybrid method due to M.J.D. Powell to 
find the zero of a system of nonlinear equations.

ZEROPOLY Function 
Finds the zeros of a polynomial with real or complex coefficients using the 
companion matrix method or, optionally, the Jenkins-Traub, three-stage 
algorithm.

Usage

result = ZEROPOLY(coef)

Input Parameters

coef — Array containing the coefficients of the polynomial in increasing order 
by degree. The polynomial is coef (n) zn + coef (n – 1) zn – 1 + … + coef (0).

Returned Value

result —The complex array of zeros of the polynomial.

Input Keywords

Double — If present and nonzero, double precision is used.

Companion — If present and nonzero, the companion matrix method is used.

Default: companion matrix method
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Jenkins_Traub — If present and nonzero, the Jenkins-Traub, three-stage algo-
rithm is used.

Discussion 

Function ZEROPOLY computes the n zeros of the polynomial

p (z) = an zn + an – 1zn – 1 + … + a1 z + a0

where the coefficients ai for i = 0, 1, …, n are real and n is the degree of the 
polynomial.

The default method used by ZEROPOLY is the companion matrix method. The 
companion matrix method is based on the fact that if Ca denotes the compan-
ion matrix associated with p (z), then det (zI – Ca) = a (z), where I is an n x n 
identity matrix. Thus, det (z0I – Ca) = 0 if, and only if, z0 is a zero of p (z). This 
implies that computing the eigenvalues of Ca will yield the zeros of p (z). This 
method is thought to be more robust than the Jenkins-Traub algorithm in most 
cases, but the companion matrix method is not as computationally efficient. 
Thus, if speed is a concern, the Jenkins-Traub algorithm should be considered.

If the keyword Jenkins_Traub is set, then ZEROPOLY function uses the Jen-
kins-Traub three-stage algorithm (Jenkins and Traub 1970, Jenkins 1975). The 
zeros are computed one-at-a-time for real zeros or two-at-a-time for a complex 
conjugate pair. As the zeros are found, the real zero or quadratic factor is 
removed by polynomial deflation.

Example

This example finds the zeros of the third-degree polynomial

p (z) = z3 – 3z2 + 4z – 2

where z is a complex variable.

coef = [-2, 4, -3, 1]

; Set the coefficients.

zeros = ZEROPOLY(coef)

; Compute the zeros.

PM, zeros, Title = $

’The complex zeros found are: ’

; Print results.

The complex zeros found are:

( 1.00000, 0.00000)
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( 1.00000, -1.00000)

(  1.00000,  1.00000)

Warning Errors

MATH_ZERO_COEFF — First several coefficients of the polynomial are equal 
to zero. Several of the last roots are set to machine infinity to compensate for 
this problem.

MATH_FEWER_ZEROS_FOUND — Fewer than (N_ELEMENTS (coef) – 1) 
zeros were found. The root vector contains the value for machine infinity in the 
locations that do not contain zeros.

ZEROFCN Function 
Finds the real zeros of a real function using Müller’s method.

Usage

result = ZEROFCN(f)

Input Parameters

f — Scalar string specifying a user-supplied function for which the zeros are to 
be found. The f function accepts one scalar parameter from which the function 
is evaluated and returns a scalar of the same type.

Returned Value

result — An array containing the zeros x of the function.

Input Keywords

Double — If present and nonzero, double precision is used.

N_Roots — Number of roots to be found by ZEROFCN.

Default: N_Roots = 1

XGuess — Array with N_Roots components containing the initial guesses for 
the zeros.

Default: XGuess = 0
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Err_Abs — First stopping criterion. A zero, xi, is accepted if 
| f (xi) | < Err_Abs.

Default: Err_Abs = SQRT(ε), where ε is the machine precision

Err_Rel — Second stopping criterion. A zero, xi, is accepted if the relative 
change of two successive approximations to xi is less than Err_Rel.

Default: Err_Rel = SQRT(ε), where ε is the machine precision

Eta — Spread criteria for multiple zeros. If the zero, xi, has been computed and 
| xi – xj | < Eps, where xj is a previously computed zero, then the computation is 
restarted with a guess equal to xi + Eta.

Default: Eta = 0.01

Eps — See Eta.

Default: Eps = SQRT(ε), where ε is the machine precision

Itmax — Maximum allowable number of iterations per zero.

Default: Itmax = 100

Info — Array of length N_Roots containing convergence information. The 
value Info (j – 1) is the number of iterations used in finding the j-th zero when 
convergence is achieved. If convergence is not obtained in Itmax iterations, Info 
(j – 1) is greater than Itmax.

Discussion

Function ZEROFCN computes n real zeros of a real function f. Given a user-
supplied function f (x) and an n-vector of initial guesses x0, x1, …, xn–1, the 
function uses Müller’s method to locate n real zeros of f. The function has two 
convergence criteria. The first criterion requires that | f (xi

(m)) |  be less than 
Err_Abs. The second criterion requires that the relative change of any two suc-
cessive approximations to an xi be less than Err_Rel. Here, xi

(m) is the m-th 
approximation to xi. Let Err_Abs be denoted by ε1, and Err_Rel be denoted by 
ε2. The criteria can be stated mathematically as follows:

ZEROFCN has two convergence criteria; “convergence” is the satisfaction of 
either criterion. 

Criterion 1:

f xi
m( )( ) ε1<
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Criterion 2:

“Convergence” is the satisfaction of either criterion.

Example

This example finds a real zero of the third-degree polynomial:

f(x) = x3 – 3x2 + 3x – 1

.RUN

; Define function f.

- FUNCTION f, x

- return, x^3 - 3 * x^2 + 3 * x - 1

- END

!P.Font = 0

; Use hardware characters for the plot.

zero = ZEROFCN("f")

; Compute the real zero(s).

x = 2 * FINDGEN(100)/99

PLOT, x, f(x)

; Plot results.

OPLOT, [zero], [f(zero)], Psym = 6

XYOUTS, .5, .5, $
’Computed zero is at x = ’ + $
STRING(zero(0)), Charsize = 1.5

xi
m 1+( ) xi

m( )–

xi
m( )----------------------------- ε2<
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Figure 7-1  The ZEROFCN function finds the real zero of a third-degree polynomial.

Warning Errors 

MATH_NO_CONVERGE_MAX_ITER — Function failed to converge within 
Itmax iterations for at least one of the N_Roots roots.

0.0 0.5 1.0 1.5 2.0
-1.0

-0.5

0.0

0.5

1.0

Computed zero is at x =      1.00000
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ZEROSYS Function 
Solves a system of n nonlinear equations, fi (x) = 0, using a modified Powell 
hybrid algorithm.

Usage

result = ZEROSYS(f, n)

Input Parameters

f — Scalar string specifying a user-supplied function to evaluate the system of 
equations to be solved. The f function accepts one parameter containing the 
point at which the functions are to be evaluated and returns the computed func-
tion values at the given point.

n — Number of equations to be solved and the number of unknowns.

Returned Value 

result —An array containing a solution of the system of equations.

Input Keywords

Double — If present and nonzero, double precision is used.

Err_Rel — Stopping criterion. The root is accepted if the relative error between 
two successive approximations to this root is less than Err_Rel.

Default: Err_Rel = SQRT(ε), where ε is the machine precision

Jacobian — Scalar string specifying a user-supplied function to evaluate the 
x n Jacobian. The function accepts as parameter the point at which the Jacobian 
is to be evaluated and returns a two-dimensional matrix defined by result (i, j) = 
∂fi / ∂xj.

Itmax — Maximum allowable number of iterations.

Default: Itmax = 200

XGuess — Array with N components containing the initial estimate of the root.

Default: XGuess = 0
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Output Keywords

Fnorm — Scalar with the value f 
2

0 + … + f 2
n–1

 at the point x.

Discussion

Function ZEROSYS is based on the MINPACK subroutine HYBRDJ, which 
uses a modification of the hybrid algorithm due to M.J.D. Powell. This algo-
rithm is a variation of Newton’s Method, which takes precautions to avoid 
undesirable large steps or increasing residuals. For further discussion, see Moré 
et al. (1980).

Example

The following 2 x 2 system of nonlinear equations is solved:

f(x) = x0 + x1 – 3

f(x) = x0
2 + x1

2 – 9

.RUN

; Define the system through the function f.

- FUNCTION f, x

- RETURN, [x(0)+x(1)-3, x(0)^2+x(1)^2-9]

- END

PM, ZEROSYS("f", 2), $

Title = ’Solution of the system:’, $

Format = ’(f10.5)’

; Compute the solution and output the results.

Solution of the system:

 0.00000

 3.00000

Warning Errors

MATH_TOO_MANY_FCN_EVALS — Number of function evaluations has 
exceeded Itmax. A new initial guess can be tried.

MATH_NO_BETTER_POINT — Keyword Err_Rel is too small. No further 
improvement in the approximate solution is possible.

MATH_NO_PROGRESS — Iteration has not made good progress. A new initial 
guess can be tried.
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Minimize a general 
objective function .......................MINCONGEN Function

Introduction 

Unconstrained Minimization 

The unconstrained minimization problem can be stated as follows: 

where f : Rn → R

is continuous and has derivatives of all orders required by the algorithms. The 
functions for unconstrained minimization are grouped into three categories: 
univariate functions, multivariate functions, and nonlinear least-squares 
functions.

For the univariate functions, it is assumed that the function is unimodal within 
the specified interval. For discussion on unimodality, see Brent (1973).

A quasi-Newton method is used for the multivariate function FMINV. The 
default is to use a finite-difference approximation of the gradient of f(x). Here, 
the gradient is defined to be the following vector: 

However, when the exact gradient can be easily provided, the Grad keyword 
should be used.

The nonlinear least-squares function uses a modified Levenberg-Marquardt 
algorithm. The most common application of the function is the nonlinear data-
fitting problem where the user is trying to fit the data with a nonlinear model.

These functions are designed to find only a local minimum point. However, a 
function may have many local minima. Try different initial points and intervals 
to obtain a better local solution.

Double-precision arithmetic is recommended for the functions when the user 
provides only the function values.

min f x( )
x IRn∈

f x( )∇ f x( )∂
x1∂

-----------
f x( )∂
x2∂

----------- … f x( )∂
xn∂

-----------, , ,=
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Linearly Constrained Minimization 

The linearly constrained minimization problem can be stated as follows: 

 

subject to

 

where f : Rn → R, A1 and A2

are coefficient matrices and b1 and b2 are vectors. If f(x) is linear, then the prob-
lem is a linear programming problem; if f(x) is quadratic, the problem is a 
quadratic programming problem. 

Function LINPROG uses a revised simplex method to solve small- to medium-
sized linear programming problems. No sparsity is assumed since the coeffi-
cients are stored in full matrix form. 

The QUADPROG function is designed to solve convex quadratic programming 
problems using a dual quadratic programming algorithm. If the given Hessian is 
not positive definite, then QUADPROG modifies it to be positive definite. In 
this case, output should be interpreted with care because the problem has been 
changed slightly. Here, the Hessian of f(x) is defined to be the n x n matrix as 
follows:

 

Nonlinearly Constrained Minimization 

The nonlinearly constrained minimization problem can be stated as follows:

min f x( )
x IRn∈

A1x b1=

A2x b2≥

f x( )∇2

xi xj∂

2

∂
∂

f x( )=

min f x( )
x IRn∈
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subject to

  

  

where f : Rn → R and gi : R
n → R for i = 1, 2, ..., m .

Function NONLINPROG uses a successive quadratic programming algorithm to 
solve this problem. A more complete discussion of this algorithm can be found 
on page 338. 

FMIN Function 
Finds the minimum point of a smooth function f (x) of a single variable using 
function evaluations and, optionally, through both function evaluations and first 
derivative evaluations.

Usage

result = FMIN(f, a, b [, grad])

Input Parameters

f — Scalar string specifying a user-supplied function to compute the value of 
the function to be minimized. Parameter f accepts the following parameter and 
returns the computed function value at this point:

x — Point at which the function is to be evaluated.

a — Lower endpoint of the interval in which the minimum point of f is to be 
located.

b — Upper endpoint of the interval in which the minimum point of f is to be 
located.

grad — Scalar string specifying a user-supplied function to compute the first 
derivative of the function. Parameter grad accepts the following parameter and 
returns the computed derivative at this point:

x — Point at which the derivative is to be evaluated.

gi x( ) 0= for i 1 2 … m1, , ,=

gi x( ) 0≥ for i m1 1 …,+ m,=
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Returned Value

result —The point at which a minimum value of f is found. If no value can be 
computed, then NaN (Not a Number) is returned.

Input Keywords

Double — If present and nonzero, double precision is used.

XGuess — Initial guess of the minimum point of f.

Default: XGuess = (a + b) / 2

Max_Evals — Maximum number of function evaluations allowed.

Default: Max_Evals = 1000

Err_Abs — Required absolute accuracy in the final value of  x. On a normal 
return, there are points on either side of x within a distance Err_Abs at which f 
is no less than f at x. Keyword Err_Abs cannot be used if the optional parameter 
grad is supplied.

Default: Err_Abs = 0.0001

Step — Order of magnitude estimate of the required change in x. Keyword Step 
cannot be used if the optional parameter grad is supplied.

Default: Step = 1.0

Err_Rel — Required relative accuracy in the final value of x. This is the first 
stopping criterion. On a normal return, the solution x is in an interval that con-
tains a local minimum and is less than or equal to max (1.0, | x |) * Err_Rel. 
When the given Err_Rel is less than zero, SQRT(ε) is used as Err_Rel, where ε 
is the machine precision. Keyword Err_Rel can only be used if the optional 
parameter grad is supplied.

Default: Err_Rel = SQRT(ε) 

Tol_Grad — Derivative tolerance used to decide if the current point is a local 
minimum. This is the second stopping criterion. Parameter x is returned as a 
solution when grad is less than or equal to Tol_Grad. Keyword Tol_Grad 
should be nonnegative; otherwise, zero is used. Keyword Tol_Grad can only be 
used if the optional parameter grad is supplied.

Default: Tol_Grad = SQRT(ε), where ε is the machine precision
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Output Keywords

FValue — Function value at point x. Keyword FValue can only be used if the 
optional parameter grad is supplied.

GValue — Derivative value at point x. Keyword GValue can only be used if the 
optional parameter grad is supplied.

Discussion 

Function FMIN uses a safeguarded, quadratic interpolation method to find a 
minimum point of a univariate function. Both the code and the underlying algo-
rithm are based on the subroutine ZXLSF written by M.J.D. Powell at the 
University of Cambridge.

The FMIN function finds the least value of a univariate function, f, which is 
specified by the function f. (Other required data are two points A and B that 
define an interval for finding a minimum point from an initial estimate of the 
solution, x0, where x0 = XGuess.) The algorithm begins the search by moving 
from x0 to x = x0 + s, where s = Step is an estimate of the required change in  x 
and may be positive or negative. The first two function evaluations indicate the 
direction to the minimum point, and the search strides out along this direction 
until a bracket on a minimum point is found or until x reaches one of the end-
points a or b. During this stage, the step length increases by a factor of between 
2 and 9 per function evaluation. The factor depends on the position of the mini-
mum point that is predicted by quadratic interpolation of the three most recent 
function values.

When an interval containing a solution has been found, the three points are as 
follows:

x1, x2, x3, with x1 < x2 < x3, f(x1) ≥  f(x2), and f(x2) ≥  f(x3)

The following rules should be considered when choosing the new x from these 
three points:

•  the estimate of the minimum point that is given by quadratic interpolation 
of the three function values

•  a tolerance parameter η, which depends on the closeness of | f | to a 
quadratic

•  whether x2 is near the center of the range between x1 and x3 or is relatively 
close to an end of this range
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In outline, the new value of x is as near as possible to the predicted minimum 
point, subject to being at least ε from x2 and subject to being in the longer inter-
val between x1 and x2 or x2 and x3, when x2 is particularly close to x1 or x3.

The algorithm is intended to provide fast convergence when f has a positive 
and continuous second derivative at the minimum and to avoid gross inefficien-
cies in pathological cases, such as the following:

f(x) = x + 1.001 | x |

The algorithm can make ε large automatically in the pathological cases. In this 
case, it is usual for a new value of x to be at the midpoint of the longer interval 
that is adjacent to the least calculated function value. The midpoint strategy is 
used frequently when changes to f are dominated by computer rounding errors, 
which happens if the user requests an accuracy that is less than the square root 
of the machine precision. In such cases, the subroutine claims to have achieved 
the required accuracy if it decides that there is a local minimum point within 
distance δ of x, where δ = Err_Abs, even though the rounding errors in f may 
cause the existence of other local minimum points nearby. This difficulty is 
inevitable in minimization routines that use only function values, so high-
precision arithmetic is recommended.

If parameter grad is supplied, then the FMIN function uses a descent method 
with either the secant method or cubic interpolation to find a minimum point of 
a univariate function. It starts with an initial guess and two endpoints. If any of 
the three points is a local minimum point and has least function value, the func-
tion terminates with a solution; otherwise, the point with least function value is 
used as the starting point.

From the starting point, for example xc, the function value fc = f (xc), the deriva-
tive value gc = g (xc), and a new point xn, defined by xn = xc – gc, are 
computed. The function fn = f (xn) and the derivative gn = g (xn) are then evalu-
ated. If either 
fn ≥ f c or gn has the opposite sign of gc, then a minimum point exists between 
xc and xn, and an initial interval is obtained; otherwise, since xc is kept as the 
point that has lowest function value, an interchange between xn and xc is per-
formed. The secant method is then used to get a new point:

Let xn <− xs. Repeat this process until an interval containing a minimum is 
found or one of the following convergence criteria is satisfied:

x s xc gc– gn gc–
xn xc–
----------------

 
 
 

=
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Criterion 1: | xc – xn | ≤ εc

Criterion 2: | gc | ≤ εg

where εc = max {1.0, | xc |} * ε, ε is a relative error tolerance and εg is a gradi-
ent tolerance.

When convergence is not achieved, a cubic interpolation is performed to obtain 
a new point. The function and derivative are then evaluated at that point; 
accordingly, a smaller interval that contains a minimum point is chosen. A safe-
guarded method is used to ensure that the interval be reduced by at least a 
fraction of the previous interval. Another cubic interpolation is then performed, 
and this function is repeated until one of the stopping criteria is met.

Example 1

A minimum point of f(x) = ex – 5x is found.

.RUN

; Define the function to be used.

- FUNCTION f, x

- RETURN, EXP(x) - 5 * x

- END

xmin = FMIN(’f’, -100, 100)

; Call FMIN to compute the minimum.

PM, xmin

; Print results.

 1.60943

x = 10 * FINDGEN(100)/99 - 5

!P.Font = 0

PLOT, x, f(x), $

Title = ’!8f(x) = e!Ex!N-5x!3’, $

XTitle = ’x’, YTitle = ’f(x)’

; Plot results.

OPLOT, [xmin], [f(xmin)], Psym = 6

str = ’(’ + STRCOMPRESS(xmin) + ’,’ + $

STRCOMPRESS(f(xmin)) + ’)’

OPLOT, [xmin],[f(xmin)], Psym = 6

XYOUTS, -5, 80, ’Minimum point:!C’ + str, $

Charsize = 1.2
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Figure 8-1  Minimum point of a smooth function.

Example 2

In this example, parameter grad is supplied, and a minimum point of 
f(x) = x (x3 – 1 ) + 10 is found with an initial guess x0 = 3.

.RUN

- FUNCTION f, x

- RETURN, x * (x^3 - 1) + 10

- END

.RUN

- FUNCTION grad, x

- RETURN, 4 * x^3 - 1

- END

xmin = FMIN(’f’, -10, 10, ’grad’)

x = 4 * FINDGEN(100)/99 - 2

!P.Font = 0

PLOT, x, f(x), $

Title = ’!8f(x) = x(x!E3!N-1)+10!3’, $

XTitle =’x’, YTitle = ’f(x)’

OPLOT, [xmin], [f(xmin)], Psym = 6

f(x) = ex-5x
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Minimum point:
( 1.60943,  -3.04719)
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str = ’(’ + STRCOMPRESS(xmin) + ’,’ + STRCOMPRESS(f(xmin)) + ’)’

XYOUTS, -1.5, 25, ’Minimum point:’+str, Charsize = 1.2

Figure 8-2  Minimum point of a smooth function.

Warning Errors

MATH_MIN_AT_LOWERBOUND — Final value of x is at the lower bound.

MATH_MIN_AT_UPPERBOUND — Final value of x is at the upper bound.

MATH_MIN_AT_BOUND — Final value of x is at a bound.

MATH_NO_MORE_PROGRESS — Computer rounding errors prevent further 
refinement of x.

MATH_TOO_MANY_FCN_EVAL — Maximum number of function evaluations 
exceeded.

f(x) =   x(x3-1)+10

-2 -1 0 1 2
x
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30

f(
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Minimum point:
( 0.629975,  9.52753)
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FMINV Function 
Minimizes a function f (x) of n variables using a quasi-Newton method.

Usage

result = FMINV(f, n)

Input Parameters 

f — Scalar string specifying a user-supplied function to evaluate the function to 
be minimized. The f function accepts the following parameter and returns the 
computed function value at the point:

x — Point at which the function is evaluated.

n — Number of variables.

Returned Value 

result — The minimum point x of the function. If no value can be computed, 
NaN is returned.

Input Keywords

Double — If present and nonzero, double precision is used.

XGuess — Array with n components containing an initial guess of the com-
puted solution.

Default: XGuess (*) = 0

Grad — Scalar string specifying a user-supplied function to compute the gradi-
ent. This function accepts the following parameter and returns the computed 
gradient at the point:

x — Point at which the gradient is evaluated.

XScale — Array with n components containing the scaling vector for the vari-
ables. Keyword XScale is used mainly in scaling the gradient and the distance 
between two points. See keywords Tol_Grad and Tol_Step for more detail.

Default: XScale (*) = 1.0
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FScale — Scalar containing the function scaling. Keyword Fscale is used 
mainly in scaling the gradient. See keyword Tol_Grad for more detail.

Default: FScale = 1.0

Tol_Grad — Scaled gradient tolerance. 

The i-th component of the scaled gradient at x is calculated as 

 

where

, 

s = XScale, and fs = FScale. 

Default: Tol_Grad = ε1/2 (ε1/3 in double) where ε is the machine 
precision

Tol_Step — Scaled step tolerance. 

The i-th component of the scaled step between two points x and y is computed 
as

where s = XScale.

Default: Tol_Step = ε 2/3

Tol_Rfcn — Relative function tolerance.

Default: Tol_Rfcn = max(10–10, ε 2/3),  max(10–20, ε 2/3) in double

Max_Step — Maximum allowable step size.

Default: Max_Step = 1000max(ε1, ε2), where 

ε2 = || s ||2, s = XScale, and t = XGuess

N_Digit — Number of good digits in the function.

gi max xi 1 si⁄,( )×
max f x( ) fs,( )

---------------------------------------------------

g f x( )∇=

xi yi–
max xi 1 si⁄,( )
------------------------------------

ε1 siti( )2

i 1=

n

∑=
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Default: machine dependent

Itmax — Maximum number of iterations.

Default: Itmax = 100

Max_Evals — Maximum number of function evaluations.

Default: Max_Evals = 400

Max_Grad — Maximum number of gradient evaluations.

Default: Max_Grad = 400

Ihess — Hessian initialization parameter. If Ihess is zero, the Hessian is initial-
ized to the identity matrix; otherwise, it is initialized to a diagonal matrix 
containing max ( f (t), fs) * si on the diagonal, where t = XGuess, fs = FScale, 
and s = XScale.

Default: Ihess = 0

Output Keywords

FValue — Name of a variable into which the value of the function at the com-
puted solution is stored.

Discussion

Function FMINV uses a quasi-Newton method to find the minimum of a func-
tion f (x) of n variables. The problem is stated below.

Given a starting point xc, the search direction is computed according to the 
formula 

d = –B–1gc

where B is a positive definite approximation of the Hessian and gc is the gradi-
ent evaluated at xc.

A line search is then used to find a new point

xn = xc + λd, λ > 0

such that 

min f x( )
x IRn∈
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f(xn) ≤ f(xc) αgTd 

where α ∈ (0, 0.5) . 

Finally, the optimality condition

|| g(x) || ≤ ε

is checked, where ε is a gradient tolerance.

When optimality is not achieved, B is updated according to the BFGS formula 

where s = xn – xc and y = gn – gc. Another search direction is then computed to 
begin the next iteration. For more details, see Dennis and Schnabel (1983, 
Appendix A).

In this implementation, the first stopping criterion for FMINV occurs when the 
norm of the gradient is less than the given gradient tolerance Tol_Grad. The 
second stopping criterion for FMINV occurs when the scaled distance between 
the last two steps is less than the step tolerance Tol_Step.

Since by default, a finite-difference method is used to estimate the gradient for 
some single-precision calculations, an inaccurate estimate of the gradient may 
cause the algorithm to terminate at a noncritical point. In such cases, high-preci-
sion arithmetic is recommended or keyword Grad is used to provide more 
accurate gradient evaluation.

Example 1

The function f(x) = 100 ( x2 – x1
2) 2 + ( 1 – x1)2 is minimized.

.RUN

; Define the function.

- FUNCTION f, x

- xn = x

- xn(0) = x(1) - x(0)^2

- xn(1) = 1 - x(0)

- RETURN, 100 * xn(0)^2 + xn(1)^2

- END

xmin = FMINV("f", 2)

; Call FMINV to compute the minimum.

B B
Bss

T
B

s
T
Bs

---------------–
yy

T

y
T
s

--------+←
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PM, xmin, Title = ’Solution:’

; Output the solution.

Solution:

 0.999986

 0.999971

PM, f(xmin), Title = ’Function value:’

Function value:

 2.09543e-10

Example 2

The function f(x) = 100 ( x2 – x1
2) 2 + ( 1 – x1)2 is minimized with the initial 

guess x = ( –1.2, 1.0). In the following plot, the asterisk marks the minimum.

.RUN

; Define the function.

- FUNCTION f, x

- xn = x

- xn(0) = x(1) - x(0)^2

- xn(1) = 1 - x(0)

- RETURN, 100 * xn(0)^2 + xn(1)^2

- END

.RUN

; Define the gradient function.

- FUNCTION grad, x

- g = x

- g(0) = -400 * (x(1) - x(0)^2) * x(0) - $

- 2 * (1 - x(0))

- g(1) = 200 * (x(1) - x(0)^2)

- RETURN, g

- END

xmin = FMINV(’f’, 2, grad = ’grad’,$

XGuess = [-1.2, 1.0], Tol_Grad = .0001)

; Call FMINV with the gradient function, an initial guess, and a
; scaled gradient tolerance.

x = 4 * FINDGEN(100)/99 - 2

y = x

surf = FLTARR(100, 100)

FOR i = 0, 99 DO FOR j = 0, 99 do $

surf(i, j) = f([x(i), y(j)])



322  Chapter 8: Optimization PV-WAVE:IMSL Mathematics Reference

; Evaluate the function f on a 100 x 100 grid for use in
; CONTOUR.

str = ’(’ + STRCOMPRESS(xmin(0)) + ’,’ + $

STRCOMPRESS(xmin(1)) + ’,’ + $

STRCOMPRESS(f(xmin)) + ’)’

!P.Charsize = 1.5

CONTOUR, surf, x, y, Levels = $

[20*FINDGEN(6), 500 + FINDGEN(7)*500], $

/C_Annotation, $

Title = ’!18Rosenbrock Function!C’ + $

’Minimum Point:!C’ + str, $

Position = [.1, .1, .8, .8]

; Call CONTOUR. Customize the contour plot, including the title
; of the plot.

OPLOT, [xmin(0)], [xmin(1)], Psym = 2, $

Symsize = 2

; Plot the solution as an asterisk.

Figure 8-3  Plot of the Rosenbrock function.

Rosenbrock Function
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Informational Errors

MATH_STEP_TOLERANCE — Scaled step tolerance satisfied. Current point 
may be an approximate local solution, but it is also possible that the algorithm 
is making very slow progress and is not near a solution or that Tol_Step is too 
big.

Warning Errors

MATH_REL_FCN_TOLERANCE — Relative function convergence. Both the 
actual and predicted relative reductions in the function are less than or equal to 
the relative function convergence tolerance.

MATH_TOO_MANY_ITN — Maximum number of iterations exceeded.

MATH_TOO_MANY_FCN_EVAL — Maximum number of function evaluations 
exceeded.

MATH_TOO_MANY_GRAD_EVAL — Maximum number of gradient evalua-
tions exceeded.

MATH_UNBOUNDED — Five consecutive steps have been taken with the maxi-
mum step length. 

MATH_NO_FURTHER_PROGRESS — Last global step failed to locate a point 
lower than the current x value. 

Fatal Errors

MATH_FALSE_CONVERGENCE — Iterates appear to be converging to a non-
critical point. It is possible that either incorrect gradient information is used, or 
the function is discontinuous, or the other stopping tolerances are too tight.
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NLINLSQ Function 
Solves a nonlinear least-squares problem using a modified Levenberg-Mar-
quardt algorithm.

Usage

result = NLINLSQ(f, m, n)

Input Parameters

f — Scalar string specifying a user-supplied function to evaluate the function 
that defines the least-squares problem. The f function accepts the following two 
parameters and returns an array of length m containing the function values at x:

m — Number of functions.

x — Array length n containing the point at which the function is 
evaluated.

m — Number of functions.

n — Number of variables where n ≤ m.

Returned Value 

result —The solution x of the nonlinear least-squares problem. If no solution 
can be computed, NULL is returned.

Input Keywords

Double — If present and nonzero, double precision is used.

XGuess — Array with n components containing an initial guess.

Default: XGuess (*) = 0

Jacobian — Scalar string specifying a user-supplied function to compute the 
Jacobian. This function accepts two parameters and returns an n x m array con-
taining the Jacobian at the point s input point. Note that each derivative ∂fi / ∂xj 
should be returned in the ( i, j ) element of the returned matrix. The parameters 
of the function are as follows:
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m   Number of equations. 

x   Array of length n at which the point Jacobian is evaluated.

XScale — Array with n components containing the scaling vector for the vari-
ables. Keyword XScale is used mainly in scaling the gradient and the distance 
between two points. See keywords Tol_Grad and Tol_Step for more detail.

Default: XScale (*) = 1

FScale — Array with m components containing the diagonal scaling matrix for 
the functions. The i-th component of FScale is a positive scalar specifying the 
reciprocal magnitude of the i-th component function of the problem.

Default: FScale (*) = 1

Tol_Grad — Scaled gradient tolerance. 

The i-th component of the scaled gradient at x is calculated as

where

, s = XScale , and .

Default: Tol_Grad = ε1/2 (ε1/3 in double), where ε is the machine 
precision

Tol_Step — Scaled step tolerance. 

The i-th component of the scaled step between two points x and y is computed 
as

where s = XScale.

Default: Tol_Step = ε2/3, where ε is the machine precision

Tol_Rfcn — Relative function tolerance.

Default: Tol_Rfcn = max(10–10, ε2/3), [max(10–40, ε2/3) in double], where 
ε is the machine precision

gi max xi 1 si⁄,( )×
1
2
--- F x( ) 2

2
---------------------------------------------------

g F x( )∇= F x( ) 2

2
fi x( )2

i 1=

m∑=

xi yy–
max xi 1 si⁄,( )
------------------------------------
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Tol_Afcn — Absolute function tolerance.

Default: Tol_Afcn = max(10–20, ε2), [max(10–40, ε2) in double], where ε 
is the machine precision

Max_Step — Maximum allowable step size.

Default: Max_Step = 1000max(ε1, ε2), where

, 

s = XScale, and t = XGuess

Trust_Region — Size of initial trust-region radius.

Default: based on the initial scaled Cauchy step

N_Digits — Number of good digits in the function.

Default: machine dependent

Itmax — Maximum number of iterations. 

Default: Itmax = 100

Max_Evals — Maximum number of function evaluations.

Default: Max_Evals = 400

Max_Jacobian — Maximum number of Jacobian evaluations.

Default: Max_Jacobian = 400

Intern_Scale — Internal variable scaling option. With this keyword, the values 
for XScale are set internally.

Tolerance — Tolerance used in determining linear dependence for the computa-
tion of the inverse of JTJ. If Jacobian is specified, Tolerance = 100ε, where ε is 
the machine precision, is the default; otherwise, SQRT(ε), where ε is the 
machine precision, is the default.

Output Keywords

Fvec — Name of the variable into which a real array of length m containing the 
residuals at the approximate solution is stored.

ε1 siti
2

i 1=

n

∑=

ε2 s 2=
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Fjac — Name of the variable into which an array of size m × n containing the 
Jacobian at the approximate solution is stored.

Rank — Name of the variable into which the rank of the Jacobian is stored.

JTJ_inverse — Name of the variable into which an array of size n × n contain-
ing the inverse matrix of JTJ, where J is the final Jacobian, is stored. If JTJ is 
singular, the inverse is a symmetric g2 inverse of JTJ. (See CHNNDSOL on 
page 39 for a discussion of generalized inverses and the definition of the g2 
inverse.) See CHNNDSOL for a discussion of generalized inverses and the defi-
nition of the g2 inverse.

Xlb — One dimensional array with n components containing the lower bounds 
on the variables.  Keywords Xlb  and Xub must be used together.

Xub — One dimensional array with n components containing the upper bounds 
on the variables. Keywords Xlb  and Xub must be used together.

Discussion

The specific algorithm used in NLINLSQ is dependent on whether the key-
words Xlb and Xub are supplied.  If keywords Xlb and Xub are not supplied, 
then the function NLINLSQ is based on the MINPACK routine LMDER by 
Moré et al. (1980).

Function NLINLSQ, based on the MINPACK routine LMDER by Moré et al. 
(1980), uses a modified Levenberg-Marquardt method to solve nonlinear least-
squares problems. The problem is stated as follows:

where m ≥ n,  F : Rn → Rm  and  fi (x) 

is the i-th component function of F(x). From a current point, the algorithm uses 
the trust region approach

subject to 

min
1
2
---F x( )TF x( )

1
2
--- fi x( )2

i 1=

m

∑=

min F xc( ) J xc( ) xn xc–( )+ 2
x IRn∈

xn xc– 2 δc≤
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to get a new point xn. Compute xn as

xn = xc – (J(xc)T J(xc) + µc I )–1 J(xc)
TF(xc) 

where µc = 0  if  δc ≥ || (J(xc)T J(xc))
–1 J(xc)

TF(xc) ||2 and 

µc > 0 otherwise. 

The value µc is defined by the function. The vector and matrix F(xc) and J(xc) 
are the function values and the Jacobian evaluated at the current point xc. This 
function is repeated until the stopping criteria are satisfied.

The first stopping criterion for NLINLSQ occurs when the norm of the func-
tion is less than the absolute function tolerance, Tol_Afcn. The second stopping 
criterion occurs when the norm of the scaled gradient is less than the given gra-
dient tolerance Tol_Grad. The third stopping criterion for NLINLSQ occurs 
when the scaled distance between the last two steps is less than the step toler-
ance Tol_Step. For more details, see Levenberg (1944), Marquardt (1963), or 
Dennis and Schnabel (1983, Chapter 10).

If keywords Xlb and Xub are supplied, then the function NLINLSQ uses a mod-
ified Levenberg-Marquardt method and an active set strategy to solve nonlinear 
least-squares problems subject to simple bounds on the variables. The problem 
is stated as follows: 

subject to l ≤ x ≤ u where m ≥ n, F : Rn → Rm, and fi(x) is the i-th component 
function of F(x). From a given starting point, an active set IA, which contains 
the indices of the variables at their bounds, is built. A variable is called a “free 
variable” if it is not in the active set. The routine then computes the search 
direction for the free variables according to the formula 

d = – (JTJ + µI)–1 JTF

where µ is the Levenberg-Marquardt parameter, F = F(x), and J is the Jacobian 
with respect to the free variables. The search direction for the variables in IA is 
set to zero. The trust region approach discussed by Dennis and Schnabel (1983) 
is used to find the new point. Finally, the optimality conditions are checked. 
The conditions are:
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||g (xi)|| ≤ ε, li < xi < ui

g (xi) < 0, xi = ui

g (xi) >0, xi = li

where ε is a gradient tolerance. This process is repeated until the optimality cri-
terion is achieved.

The active set is changed only when a free variable hits its bounds during an 
iteration or the optimality condition is met for the free variables but not for all 
variables in IA, the active set. In the latter case, a variable that violates the opti-
mality condition will be dropped out of IA. For more detail on the Levenberg-
Marquardt method, see Levenberg (1944) or Marquardt (1963). For more detail 
on the active set strategy, see Gill and Murray (1976).

Since a finite-difference method is used to estimate the Jacobian for some sin-
gle-precision calculations, an inaccurate estimate of the Jacobian may cause the 
algorithm to terminate at a noncritical point. In such cases, high-precision arith-
metic is recommended. Also, whenever the exact Jacobian can be easily 
provided, the keyword Jacobian should be used.

Example

In this example, the nonlinear data-fitting problem found in Dennis and Schna-
bel (1983, p. 225),

 where fi(x) = , 

is solved with the data t = [1, 2, 3]  and y = [2, 4, 3].

.RUN

; Define the function that defines the least-squares problem.

- FUNCTION f, m, x

- y = [2, 4, 3]

- t = [1, 2, 3]

- RETURN, EXP(x(0) * t) - y

- END

solution = NLINLSQ("f", 3, 1)

; Call NLINLSQ.

PM, solution, Title = ’The solution is:’

min
1
2
--- fi x( )2

3

∑ fi x( ) etix yi–=



330  Chapter 8: Optimization PV-WAVE:IMSL Mathematics Reference

; Output the results.

The solution is:

 0.440066

PM, f(m, solution), $

Title = ’The function values are:’

The function values are:

 -0.447191

 -1.58878

 0.744159

Informational Errors

MATH_STEP_TOLERANCE — Scaled step tolerance satisfied. The current point 
may be an approximate local solution, but it is also possible that the algorithm 
is making very slow progress and is not near a solution or that Tol_Step is too 
big.

Warning Errors

MATH_LITTLE_FCN_CHANGE — Both the actual and predicted relative 
reductions in the function are less than or equal to the relative function 
tolerance.

MATH_TOO_MANY_ITN — Maximum number of iterations exceeded.

MATH_TOO_MANY_FCN_EVAL — Maximum number of function evaluations 
exceeded.

MATH_TOO_MANY_JACOBIAN_EVAL — Maximum number of Jacobian eval-
uations exceeded.

MATH_UNBOUNDED — Five consecutive steps have been taken with the maxi-
mum step length.

Fatal Errors

MATH_FALSE_CONVERGE — Iterates appear to be converging to a noncritical 
point.
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LINPROG Function 
Solves a linear programming problem using the revised simplex algorithm.

Usage
result = LINPROG(a, b, c)

Input Parameters
a — Two-dimensional matrix containing the coefficients of the constraints. The 
coefficient for the i-th constraint is contained in A (i, *).

b — One-dimensional matrix containing the right-hand side of the constraints. 
If there are limits on both sides of the constraints, b contains the lower limit of 
the constraints.

c — One-dimensional array containing the coefficients of the objective 
function.

Returned Value

result —The solution x of the linear programming problem.

Input Keywords

Double — If present and nonzero, double precision is used.

Bu — Array with N_ELEMENTS(b) elements containing the upper limit of the 
constraints that have both the lower and the upper bounds. If no such constraint 
exists, Bu is not needed.

Irtype — Array with N_ELEMENTS(b) elements indicating the types of gen-
eral constraints in the matrix A. Let ri = Ai0x0 + … + Ain–1 xn–1. The value of 
Irtype (i) is described in the table below.

Irtype (i) Constraints

0 ri = bi

1 ri ≤ bu

2 ri ≥ bi

3 bi ≤ ri ≤ bu
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Default: Irtype (*) = 0

Xlb — Array with N_ELEMENTS(c) elements containing the lower bound on 
the variables. If there is no lower bound on a variable, 1030 should be set as the 
lower bound.

Default: Xlb (*) = 0

Xub — Array with N_ELEMENTS(c) elements containing the upper bound on 
the variables. If there is no upper bound on a variable, –1030 should be set as 
the upper bound.

Default: Xub (*) = infinity

Itmax — Maximum number of iterations.

Default: Itmax = 10,000

Output Keywords

Obj — Name of the variable into which the optimal value of the objective func-
tion is stored.

Dual — Name of the variable into which the array with N_ELEMENTS(c) ele-
ments, containing the dual solution, is stored.

Discussion

Function LINPROG uses a revised simplex method to solve linear programming 
problems; i.e., problems of the form

subject to

where c is the objective coefficient vector, A is the coefficient matrix, and the 
vectors bl, bu, xl, and xu are the lower and upper bounds on the constraints and 
the variables.

min cTx
x IRn∈

bl Ax bu≤ ≤

xl x xu≤ ≤
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For a complete discussion of the revised simplex method, see Murtagh (1981) 
or Murty (1983).

This problem can be solved more efficiently.

Example

The linear programming problem in the standard form

min f(x) = –x0 – 3x1

subject to 

is solved.

RM, a, 4, 6

; Define the coefficients of the constraints.

row 0: 1 1 1  0 0 0

row 1: 1 1 0 -1 0 0

row 2: 1 0 0  0 1 0

row 3: 0 1 0  0 0 1

RM, b, 4, 1

; Define the right-hand side of the constraints.

row 0: 1.5

row 1: .5

row 2: 1

row 3: 1

RM, c, 6, 1

; Define the coefficients of the objective function.

row 0: -1

row 1: -3

row 2: 0

row 3: 0

x0 + x1 + x2 = 1.5

x0 + x1 – x3 = 0.5

x0 + x4 = 1.0

x1 + x5 = 1.0

xi 0 for i,≥ 0 … 5, ,=
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row 4:  0

row 5: 0

PM, LINPROG(a, b, c), Title = ’Solution’

; Call LINPROG and print the solution.

Solution

 0.500000

 1.00000

 0.00000

 1.00000

 0.500000

 0.00000

Warning Errors

MATH_PROB_UNBOUNDED — Problem is unbounded.

MATH_TOO_MANY_ITN — Maximum number of iterations exceeded.

MATH_PROB_INFEASIBLE — Problem is infeasible.

Fatal Errors

MATH_NUMERIC_DIFFICULTY — Numerical difficulty occurred. If float is 
currently being used, using double may help.

MATH_BOUNDS_INCONSISTENT — Bounds are inconsistent.
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QUADPROG Function 
Solves a quadratic programming (QP) problem subject to linear equality or ine-
quality constraints.

Usage

result = QUADPROG(a, b, g, h)

Input Parameters 

a — Two-dimensional matrix containing the linear constraints.

b — One-dimensional matrix of the right-hand sides of the linear constraints.

g — One-dimensional array of the coefficients of the linear term of the objec-
tive function.

h — Two-dimensional array of size N_ELEMENTS(g) × N_ELEMENTS(g) 
containing the Hessian matrix of the objective function. It must be symmetric 
positive definite. If h is not positive definite, the algorithm attempts to solve the 
QP problem with h replaced by h + diag*I, such that h + diag*I is positive 
definite.

Returned Value 

result —The solution x of the QP problem.

Input Keywords 

Double — If present and nonzero, double precision is used.

Meq — Number of linear equality constraints. If Meq is used, then the equality 
constraints are located at a (i, *) for i = 0, …, Meq – 1.

Default: Meq = N_ELEMENTS(a (*, 0) ) n; i.e., all constraints are 
equality constraints

Output Keywords

Diag — Name of the variable into which the scalar, equal to the multiple of the 
identity matrix added to h to give a positive definite matrix, is stored.
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Dual — Name of the variable into which an array with N_ELEMENTS(g) ele-
ments, containing the Lagrange multiplier estimates, is stored.

Obj — Name of the variable into which the optimal object function found is 
stored.

Discussion

Function QUADPROG is based on M.J.D. Powell’s implementation of the 
Goldfarb and Idnani dual quadratic programming (QP) algorithm for convex QP 
problems subject to general linear equality/inequality constraints (Goldfarb and 
Idnani 1983). I.e., problems of the form

subject to

given the vectors b0, b1, and g, and the matrices H, A0, and A1. Matrix H is 
required to be positive definite. In this case, a unique x solves the problem, or 
the constraints are inconsistent. If H is not positive definite, a positive definite 
perturbation of H is used in place of H. For more details, see Powell (1983, 
1985).

If a perturbation of H, H + αI, is used in the QP problem, H + αI also should 
be used in the definition of the Lagrange multipliers.

Example

The QP problem

min f(x) = –x2
0 + x2

1
 + x2

2 + x2
3 + x2

4 – 2x1x2
  – 2x3x4

 –2x0

subject to

x0 + x1 + x2 + x3 + x4 = 5

x2 – 2x3 – 2x4 = –3

is solved.

min g
T
x

1
2
---x

T
Hx+

x IRn∈

A1x b1=

A2x b2≥
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RM, a, 2, 5

; Define the coefficient matrix A.

row 0: 1 1 1 1  1

row 1: 0 0 1 -2 -2

h = [[2, 0, 0, 0, 0], $

[0, 2, -2,  0, 0], $

[0, -2,  2, 0, 0], $

[0,  0,  0,  2, -2], $

[0, 0, 0, -2, 2]]

; Define the Hessian matrix of the objective function. Notice that since
; h is symmetric, the array concatenation operators “[ ]” are used to
; define it.

b = [5, -3]

; Define b.

g = [ -2, 0, 0, 0, 0]

; Define g.

x = QUADPROG(a, b, g, h)

; Call QUADPROG.

PM, x

; Output solution.

Solution:

 1.00000

 1.00000

 1.00000

 1.00000

 1.00000

Warning Errors

MATH_NO_MORE_PROGRESS — Due to the effect of computer rounding error, 
a change in the variables fails to improve the objective function value. Usually, 
the solution is close to optimum.

Fatal Errors

MATH_SYSTEM_INCONSISTENT — System of equations is inconsistent. 
There is no solution.
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NONLINPROG Function 
Solves a general nonlinear programming problem using the successive qua-
dratic programming (QP) algorithm.

Usage

result = NONLINPROG(f, m, n)

Input Parameters

f — Scalar string specifying a user-supplied procedure to evaluate the function 
at a given point. Procedure f has the following parameters:

m — Total number of constraints.

meq — Number of equality constraints.

x — One-dimensional array at which point the function is evaluated.

active — One-dimensional array with mmax components indicating the 
active constraints where mmax is the maximum of (1, m).

f — Computed function value at the point x. (Output)

g — One-dimensional array with mmax components containing the val-
ues of the constraints at point x, where mmax is the maximum (1, m). 
(Output)

m — Total number of constraints.

n — Number of variables.

Returned Value 

result —The solution of the nonlinear programming problem.

Input Keywords

Double — If present and nonzero, double precision is used.

Meq — Number of equality constraints.

Default: Meq = m
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Ibtype — Scalar indicating the types of bounds on variables.

Default: no bounds are enforced

XGuess — Array with n components containing an initial guess of the com-
puted solution.

Default: XGuess (*) = 0

Grad — Scalar string specifying a user-supplied procedure to evaluate the gra-
dients at a given point. The procedure specified by Grad has the following 
parameters:

mmax — Maximum of (1, m).

m — Total number of constraints.

meg — Number of equality constraints.

x — Array at which point the function is evaluated.

active — Array with mmax components indicating the active 
constraints.

f — Computed function value at the point x.

g — Array with mmax components containing the values of the con-
straints at point x.

df — Array with n components containing the values of the gradient of 
the objective function. (Output)

dg — Array of size n × mmax containing the values of the gradients for 
the active constraints. (Output)

Err_Rel — Final accuracy.

Default: Err_Rel = SQRT(ε), where ε is the machine precision

Ibtype Action

0 User supplies all the bounds.
1 All variables are nonnegative.
2 All variables are nonpositive.
3 User supplies only the bounds on first variable; all other 

variables have the same bounds.
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XScale — Array with n components containing the reciprocal magnitude of 
each variable. Keyword XScale is used to choose the finite-difference stepsize, 
h. 

The i-th component of h is computed as

, 

where ε is the machine precision, s = XScale, and sign(xi) = 1 if xi ≥ 0; other-
wise, sign(xi) = –1.

Default: XScale (*) = 1

Itmax — Maximum number of iterations allowed.

Default: Itmax = 200

Output Keywords

Obj — Name of a variable into which a scalar containing the value of the 
objective function at the computed solution is stored.

Input/Output Keywords

Xlb — Named variable, containing a one-dimensional array with n compo-
nents, containing the lower bounds on the variables. (Input, if Ibtype = 0; 
Output, if Ibtype = 1 or 2; Input/Output, if Ibtype = 3). If there is no lower 
bound on a variable, the corresponding Xlb value should be set to –106.

Default: no lower bounds are enforced on the variables

Xub — Named variable, containing a one-dimensional array with n compo-
nents, containing the upper bounds on the variables. (Input, if Ibtype = 0; 
Output, if Ibtype = 1 or 2; Input/Output, if Ibtype = 3). If there is no upper 
bound on a variable, the corresponding Xub value should be set to 106.

Default: no upper bounds are enforced on the variables

Discussion

Function NONLINPROG, based on the subroutine NLPQL developed by Schitt-
kowski (1986), uses a successive quadratic programming method to solve the 
general nonlinear programming problem. 

ε*max xi 1 si⁄,( )*sign xi( )
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The problem is stated as follows:

subject to

,   

,  

where all problem functions are assumed to be continuously differentiable. The 
method, based on the iterative formulation and solution of quadratic program-
ming (QP) subproblems, obtains these subproblems by using a quadratic 
approximation of the Lagrangian and by linearizing the constraints. That is,

subject to

,   

,   

where Bk is a positive definite approximation of the Hessian and xk is the cur-
rent iterate. Let dk be the solution of the subproblem. A line search is used to 
find a new point xk + 1

xk + 1 = xk + λdk λ ∈ ( 0, 1 ]

such that a “merit function” has a lower function value at the new point. Here, 
the augmented Lagrange function (Schittkowski 1986) is used as the merit 
function.

When optimality is not achieved, Bk is updated according to the modified BFGS 
formula (Powell 1978). Note that this algorithm may generate infeasible points 

min f x( )
x IRn∈

gj x( ) 0= for j 0 … me 1–, ,=

gj x( ) 0≥ for j me … m 1–, ,=

xl x xu≤ ≤( )

min
1
2
---dTBkd f xk( )Td∇+

x IRn∈

gj xk( )T
d∇ gj xk( )+ 0= for j 0 … me 1–, ,=

gj xk( )Td∇ gj xk( )+ 0≥ for j me … m 1–, ,=

xl xk– d xu xk–≤ ≤
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during the solution process. Therefore, if feasibility must be maintained for 
intermediate points, this function may not be suitable. For more theoretical and 
practical details, see Stoer (1985), Schittkowski (1983, 1986), and Gill et al. 
(1985).

Example

The problem

min F(x) = (x1 – 2)2 + (x2 – 1)2

subject to

g1(x) = x1 – 2x2 + 1 = 0

g2(x) = –x2
1/4 – x2

2 + 1 ≥ 0

is solved.

.RUN

; Define the procedure to evaluate the function at a given point.

- PRO f, m, meq, x, active, f, g

- tmp1 = x(0) - 2.

- tmp2 = x(1) - 1.

- f = tmp1^2 + tmp2^2

- g = FLTARR(2)

- IF active(0) THEN g(0) = x(0) - 2. * $

-  x(1) + 1.

- IF active(1) THEN g(1) = -(x(0)^2)/4. - $

- x(1)^2 + 1.

- END

x = NONLINPROG(’f’, 2, 2, Meq = 1)

; Call NONLINPROG to compute the solution.

PM, x, Title = ’Solution:’

; Output the solution.

Solution:

 0.822902

 0.911452

Warning Errors

MATH_TOO_MANY_ITN — Maximum number of iterations exceeded.
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Fatal Errors

MATH_UPHILL_DIRECTION — Search direction is uphill.

MATH_TOO_MANY_LINESEARCH — Line search took more than five func-
tion calls.

MATH_NO_PROGRESS_MADE — Search direction is close to zero.

MATH_QP_INCONSISTENT — Constraints for the QP subproblem are 
inconsistent. 

MINCONGEN Function 
Minimizes a general objective function subject to linear equality/inequality 
constraints.

Usage 

result = MINCONGEN(f, a, b, xlb, xub) 

Input Parameters 

f — Scalar string specifying a user-supplied function to evaluate the function to 
be minimized.  Function f accepts the following input parameters: 

x — One-dimensional array of length n = N_ELEMENTS(x) contain-
ing the point at which the function is evaluated. 

The return value of this function is the function value at x.

a — Two-dimensional array of size ncon by nvar containing the equality con-
straint gradients in the first Meq rows followed by the inequality constraint 
gradients, where ncon is the number of linear constraints (excluding simple 
bounds) and nvar is the number of variables.  See keyword Meq for setting the 
number of equality constraints.

b — One-dimensional array of size ncon containing the right-hand sides 
of the linear constraints. Specifically, the constraints on the variables 
xi, i = 0, nvar – 1, are ak,0x0 + ... + ak,nvar−1xnvar−1 = bk, k = 0, ...,
Meq −1 and ak,0x0 + ... + ak,nvar−1xnvar−1 ≤ bk, k = Meq, ..., ncon - 1. Note that 
the data that define the equality constraints come before the data of the 
inequalities.
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xlb — One-dimensional array of length nvar containing the lower bounds on the 
variables; choose a very large negative value if a component should be 
unbounded below or set xlb(i) = xub(i) to freeze the i-th variable. Specifically, 
these simple bounds are xlb(i) ≤ xi, for i = 0, ..., nvar–1.

xub — One-dimensional array of length nvar containing the upper bounds 
on the variables; choose a very large positive value if a component should be 
unbounded above. Specifically, these simple bounds are xi ≤ xub(i), for 
i = 0, nvar–1.

Returned Value

result — One-dimensional array of length nvar containing the computed 
solution.

Input Keywords

Double — If present and nonzero, double precision is used.

Meq — Number of linear equality constraints.

Default: Meq = 0

Xguess — One-dimensional array with nvar components containing an initial 
guess.

Default: Xguess = 0

Grad — Scalar string specifying the name of the user-supplied function to com-
pute the gradient at the point x.  The function accepts the following parameters:

X — One-dimensional array of length nvar.

The return value of this function is a one-dimensional array of length 
nvar containing the values of the gradient of the objective function.

Max_Fcn — Maximum number of function evaluations.

Default:  Max_Fcn = 400

Tolerance — The nonnegative tolerance on the first order conditions at the cal-
culated solution.

Default:  Tolerance = SQRT(ε), where ε is machine epsilon.
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Output Keywords

Num_Active — Named variable into which the final number of active con-
straints is stored.

Active_Const — Named variable into which an one-dimensional array of length 
Num_Active containing the indices of the final active constraints is stored.

Lagrange_Mult — Named variable into which an one-dimensional array of 
length Num_Active containing the Lagrange multiplier estimates of the final 
active constraints is stored.

Obj — Named variable into which the value of the objective function is stored.

Discussion

The function MINCONGEN is based on M.J.D. Powell’s TOLMIN, which 
solves linearly constrained optimization problems, i.e., problems of the form

min f (x)

subject to
A1x = b1
A2x ≤ b2
xl ≤ x ≤ xu

given the vectors b1, b2, xl ,and xu and the matrices A1 and A2.

The algorithm starts by checking the equality constraints for inconsistency and 
redundancy. If the equality constraints are consistent, the method will revise x0, 
the initial guess, to satisfy

A1x = b1

Next, x0 is adjusted to satisfy the simple bounds and inequality constraints. This 
is done by solving a sequence of quadratic programming subproblems to mini-
mize the sum of the constraint or bound violations.

Now, for each iteration with a feasible xk, let Jk be the set of indices of inequal-
ity constraints that have small residuals. Here, the simple bounds are treated as 
inequality constraints. Let Ik be the set of indices of active constraints. The fol-
lowing quadratic programming problem
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subject to
ajd = 0, j ∈ Ik

ajd ≤ 0, j ∈ Jk

is solved to get (dk, λk) where aj is a row vector representing either a constraint 
in A1 or A2 or a bound constraint on x. In the latter case, the aj = ei for the 
bound constraint xi ≤ (xu)i and aj = -ei for the constraint -xi ≤ (xl)i. Here, ei is a 
vector with 
1 as the i-th component, and zeros elsewhere. Variables λk are the Lagrange 
multipliers, and Bk is a positive definite approximation to the second derivative 
∇2 f(xk).

After the search direction dk is obtained, a line search is performed to locate a 
better point. The new point xk+1 = xk +αkdk has to satisfy the conditions

f(xk + αkdk) ≤ f(xk) + 0.1 αk (dk)T ∇ f(xk)

and

(dK)T∇ f(xk + αkdk) ≤ 0.7 (dk)T∇ f(xK)

The main idea in forming the set Jk is that, if any of the equality constraints 
restricts the step-length αk, then its index is not in Jk. Therefore, small steps are 
likely to be avoided.

Finally, the second derivative approximation BK, is updated by the BFGS for-
mula, if the condition

(dK)T∇ f(xk + αkdk) − ∇ f(xk) > 0

holds. Let xk ← xk+1, and start another iteration.

The iteration repeats until the stopping criterion
|| ∇ f(xk) - AkλK||2 ≤ τ

is satisfied. Here τ is the supplied tolerance. For more details, see Powell (1988, 
1989). 

Since a finite difference method is used to approximate the gradient for some 
single precision calculations, an inaccurate estimate of the gradient may cause 
the algorithm to terminate at a noncritical point. In such cases, high precision 
arithmetic is recommended. Also, if the gradient can be easily provided, the 
input keyword Grad should be used.

min f x d f x d B dk T k T k� � � �+ ∇ + 1

2
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Example 1

In this example, the problem

FUNCTION fcn,  x

   f  =  x(0)*x(0) + x(1)*x(1) + x(2)*x(2) + x(3)*x(3) + $

         x(4)*x(4) - 2.0*x(1)*x(2) - 2.0*x(3) * x(4) - $

         2.0*x(0) 

   RETURN,  f

END

meq  =  2

a  =  TRANSPOSE([[1.0, 1.0, 1.0, 1.0, 1.0], $

                 [0.0, 0.0, 1.0, -2.0, -2.0]])

b  =  [5.0, -3.0]

xlb  =  FLTARR(5)

xlb(*)  =  0.0

xub  =  FLTARR(5)

xub(*)  =  10.0

; Call CMAST_ERR_PRINT to suppress note errors

CMAST_ERR_PRINT, 1

x  =  MINCONGEN(’fcn’, a, b, xlb, xub, Meq = meq)

PM, x, Title = ’Solution’

Solution

      1.00000

      1.00000

      1.00000

      1.00000

      1.00000

min 

subject to 

f x x x x x x x x x x x

x x x x x

x x x

x

� � = + + + + − − −
+ + + + =

− − = −
≤ ≤

1
2

2
2

3
2

4
2
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2
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2 2 2

5
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0 10



348  Chapter 8: Optimization PV-WAVE:IMSL Mathematics Reference

Example 2

In this example, the problem from Schittkowski (1987)
min f(x) = -x0x1x2

subject to -x0 -2x1 - 2x2 ≤ 0

x0 + 2x1 + 2x2 ≤ 72

0 ≤ x0 ≤ 20

0 ≤ x1 ≤ 11

0 ≤ x2 ≤ 42

is solved with an initial guess of x0 = 10, x1 = 10 and x2 = 10.

FUNCTION fcn,  x

   f  =  -x(0)*x(1)*x(2) 

   RETURN,  f

END

FUNCTION gradient, x

   g  =  FLTARR(3)

   g(0)  =  -x(1)*x(2)

   g(1)  =  -x(0)*x(2)

   g(2)  =  -x(0)*x(1)

   RETURN, g   

END 

meq  =  0

a  =  TRANSPOSE([[-1.0, -2.0, -2.0], [1.0, 2.0, 2.0]])

b  =  [0.0, 72.0]

xlb  =  FLTARR(3)

xlb(*)  =  0.0

xub  =  [20.0, 11.
xguess  =  FLTARR(3)
xguess(*)  =  10.0

Call CMAST_ERR_PRINT to suppress note errors
CMAST_ERR_PRINT, 1
x  =  MINCONGEN(’fcn’, a, b, xlb, xub, Meq = meq, $
            Grad = ’gradient’, Xguess = xguess, Obj = obj)
PM, x, Title = ’Solution’
Solution
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      20.0000
      11.0000
      15.0000
PRINT, "Objective value =", obj
Objective value =     -3300.00
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ERF Function 
Evaluates the real error function erf(x). Using a keyword, the inverse error 
function erf –1(x) can be evaluated.

Usage

result = ERF(x)

Input Parameters

x — Expression for which the error function is to be evaluated.

Returned Value

result — The value of the error function erf(x).

Input Keywords

Double — If present and nonzero, double precision is used.

Inverse — Evaluates the real inverse error function erf–1(x). The inverse error 
function is defined only for –1 < x < 1.

Discussion

The error function erf(x) is defined below.

All values of x are legal. The inverse error function y = erf –1(x) is such that 
x = erf (y).

erf x( ) 2

π
------- e t

2– td
0

x

∫=
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Example 1

Plot the error function over [ –3, 3 ].

x = 6 * FINDGEN(100)/99 - 3

PLOT, x, ERF(x), XTitle = "x", YTitle = "erf(x)"

Figure 9-1  Plot of erf(x).

Example 2

Plot the inverse of the error function over ( –1, –1).

x = 2 * FINDGEN(100)/99 - 1

PLOT, x, ERF(x(1:98), /Inverse), XTitle = "x", $
YTitle = "erf!E-1!N(x)"

-4 -2 0 2 4
x

-1.0

-0.5

0.0

0.5

1.0
er

f(
x)erf(x)
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Figure 9-2  Plot of erf –1(x).

ERFC Function 
Evaluates the real complementary error function erfc(x). Using a keyword, the 
inverse complementary error function erfc–1(x) can be evaluated.

Usage

result = ERFC(x)

Input Parameters

x — Expression for which the complementary error function is to be evaluated.

Returned Value 

result — The value of the complementary error function erfc(x).

Input Keywords

Double — If present and nonzero, double precision is used.

Inverse — Evaluates the inverse complementary error function erfc–1(x).   The 
parameter must be in the range 0 < x < 2.

-1.0 -0.5 0.0 0.5 1.0
x

-2

0

2

er
f-1

(x
)

erf -1(x)
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Discussion

The complementary error function erfc(x) is defined as

where parameter x must not be so large that the result underflows. Approxi-
mately, x should be less than

, 

where s is the smallest representable floating-point number. 

The inverse complementary error function y = erfc–1(x)  is such that x = erfc(y).

Example 1

Plot the complementary error function over [–3, 3].

x = FINDGEN(100)/99

PLOT, 6 * x - 3, ERFC(6 * x - 3), XTitle = "x", $
YTitle = "erfc(x)"

Figure 9-3  Plot of erf(x). 

erfc x( ) 2

π
------- e t

2– td
x

∞

∫=

-ln π s( )[ ]1 2⁄
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x

0.0

0.5

1.0

1.5

2.0

er
fc

(x
)
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Example 2

Plot the inverse of the complementary error function over (0, 2).

x = FINDGEN(100)/99

PLOT, 2 * x(1:98), ERFC(2 * x(1:98), /Inverse), XTitle = "x", $

YTitle = "erfc!E-1!N(x)"

Figure 9-4  Plot of erfc–1(x) .

Alert Errors

MATH_LARGE_ARG_UNDERFLOW — Parameter x must not be so large that the 
result underflows. Very approximately, x should be less than 

, 

where ε is the machine precision.

Warning Errors

MATH_LARGE_ARG_WARN — Parameter |x| should be less than 

, 

0.0 0.5 1.0 1.5 2.0
x

-2

0

2

er
fc

-1
(x

)

erf -1(x)

2 ε 4π( )⁄–

1 ε( )⁄
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where ε is the machine precision, to prevent the answer from being less accu-
rate than half precision.

Fatal Errors

MATH_ERF_ALGORITHM — Algorithm failed to converge.

MATH_SMALL_ARG_OVERFLOW — Computation of 

 

must not overflow.

MATH_REAL_OUT_OF_RANGE — Function is defined only for 0 < x < 2.

BETA Function 
Evaluates the real beta function β(x, y).

Usage

result = BETA(x, y)

Input Parameters

x — First beta parameter. It must be positive.

y — Second beta parameter. It must be positive.

Returned Value

result — The value of the beta function β(x, y). If no result can be computed, 
then NaN (Not a Number) is returned.

Input Keywords

Double — If present and nonzero, double precision is used.

ex
2

erfc x( )
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Discussion

The beta function, β(x, y), is defined as

 

requiring that x > 0 and y > 0. It underflows for large parameters.

Example

Plot the beta function over [ε, 1/4 + ε] x [ε, 1/4 + ε] for ε = 0.01. 

x = 1e-2 + .25 * FINDGEN(25)/24

y = x

b = FLTARR(25, 25)

FOR i = 0, 24 DO b(i, *) = BETA(x(i), y)

; Compute values of the beta function.

SURFACE, b, x, y, XTitle = ’X’, YTitle = ’Y’, Az = 320, ZAxis = 
2

; Plot the computed values as a surface and rotate the plot
; using the keyword Az.

Figure 9-5  Plot of the real beta function.

β x y,( ) Γ x( )Γ y( )
Γ x y+( )
-------------------- tx 1– 1 t–( )y 1– td

0

1

∫= =
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Alert Errors

MATH_BETA_UNDERFLOW — Parameters must not be so large that the result 
underflows.

Fatal Errors

MATH_ZERO_ARG_OVERFLOW — One of the parameters is so close to zero 
that the result overflows.

LNBETA Function 
Evaluates the logarithm of the real beta function ln β(x, y).

Usage

result = LNBETA(x, y)

Input Parameters

x — First argument of the beta function. It must be positive.

y — Second argument of the beta function. It must be positive.

Returned Value

result — The value of the logarithm of the beta function β(x, y).

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion 

The beta function, β(x, y), is defined as

and LNBETA returns ln β(x, y). The logarithm of the beta function requires that 
x > 0 and y > 0. It can overflow for very large parameters.

β x y,( ) Γ x( )Γ y( )
Γ x y+( )
-------------------- t

x 1– 1 t–( )y 1–
td

0

1

∫= =
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Example

Evaluate the log of the beta function ln β (0.5, 0.2).

PM, LNBETA(.5, .2)

      1.83556

Warning Errors

MATH_X_IS_TOO_CLOSE_TO_NEG_1 — Result is accurate to less than one 
precision because the expression –x / (x + y) is too close to –1.

BETAI Function 
Evaluates the real incomplete beta function.

Usage

result = BETAI(x, a, b)

Input Parameters

x — Upper limit of integration.

a — First beta distribution parameter.

b — Second beta distribution parameter.

Returned Value

result — The value of the incomplete beta function.

Input Keywords

Double — If present and nonzero, double precision is used.
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Discussion

The incomplete beta function is defined as

requiring that 0 ≤ x ≤ 1, a > 0, and b > 0. It underflows for sufficiently small x 
and large a. This underflow is not reported as an error. Instead, the value zero is 
returned. 

Example

In this example, I0.61(2.2, 3.7) is computed and printed.

PM, BETAI(.61, 2.2, 3.7)

     0.882172

GAMMA Function 
Evaluates the real gamma function Γ(x).

Usage

result = GAMMA(x)

Input Parameters

x — Expression for which the gamma function is to be evaluated.

Returned Value

result — The value of the gamma function Γ(x).

Input Keywords

Double — If present and nonzero, double precision is used.

Ix a b,( )
βx a b,( )
β a b,( )
------------------ 1

β a b,( )
---------------- t

a 1– 1 t–( )b 1–
td

0

x

∫= =
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Discussion

The gamma function, Γ(x), is defined as follows: 

For x < 0, the above definition is extended by analytic continuation.

The gamma function is not defined for integers less than or equal to zero. It 
underflows for

x << 0

and overflows for large x. It also overflows for values near negative integers.

Example

In this example, Γ(1.5) is computed and printed.

PM, GAMMA(1.5)

     0.886227

Alert Errors

MATH_SMALL_ARG_UNDERFLOW — Parameter x must be large enough that 
Γ(x) does not underflow. The underflow limit occurs first for parameters close 
to large negative half integers. Even though other parameters away from these 
half integers may yield machine-representable values of Γ(x), such parameters 
are considered illegal. Users who need such values should use the log Γ(x) 
function LNGAMMA.

Warning Errors

MATH_NEAR_NEG_INT_WARN — Result is accurate to less than one-half pre-
cision because x is too close to a negative integer.

Fatal Errors

MATH_ZERO_ARG_OVERFLOW — Parameter for the gamma function is too 
close to zero.

MATH_NEAR_NEG_INT_FATAL — Parameter for the function is too close to 
a negative integer.

Γ x( ) t x 1– e t– td
0

∞

∫=
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MATH_LARGE_ARG_OVERFLOW — Function overflows because x is too large.

MATH_CANNOT_FIND_XMIN — Algorithm used to find xmin failed. This error 
should never occur.

MATH_CANNOT_FIND_XMAX — Algorithm used to find xmax failed. This error 
should never occur.

LNGAMMA Function 
Evaluates the logarithm of the absolute value of the gamma function log|Γ(x)|.

Usage

result = LNGAMMA(x)

Input Parameters

x — Expression for which the logarithm of the absolute value of the gamma 
function is to be evaluated.

Returned Value 

result — The value of the logarithm of gamma function log|Γ(x)|.

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

The logarithm of the absolute value of the gamma function log|Γ(x)| is 
computed.

Example 

In this example, log|Γ(3.5)| is computed and printed.

PM, LNGAMMA(3.5)

      1.20097
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Warning Errors

MATH_NEAR_NEG_INT_WARN — Result is accurate to less than one-half pre-
cision because x is too close to a negative integer.

Fatal Errors

MATH_NEGATIVE_INTEGER — Parameter for the function cannot be a nega-
tive integer.

MATH_NEAR_NEG_INT_FATAL — Parameter for the function is too close to 
a negative integer.

MATH_LARGE_ABS_ARG_OVERFLOW — Parameter |x| must not be so large 
that the result overflows.

GAMMAI Function 
Evaluates the incomplete gamma function γ(a, x).

Usage

result = GAMMAI(a, x)

Input Parameters

a — Integrand exponent parameter. It must be positive.

x — Upper limit of integration. It must be nonnegative.

Returned Value 

result — The value of the incomplete gamma function γ(a, x).

Input Keywords

Double — If present and nonzero, double precision is used.
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Discussion

The incomplete gamma function, γ(a, x), is defined as follows: 

The incomplete gamma function is defined only for a > 0. Although γ(a, x) is 
well-defined for x > –infinity, this algorithm does not calculate γ(a, x) for nega-
tive x. For large a and sufficiently large x, γ(a, x) may overflow. Gamma 
function γ(a, x) is bounded by Γ(a), and users may find this bound a useful 
guide in determining legal values for a.

Example 

Plot the incomplete gamma function over [0.1, 1.1] x [0, 4].

x = 4. * FINDGEN(25)/24

a = 1e-1 + FINDGEN(25)/24

b = FLTARR(25, 25)

FOR i = 0, 24 DO b(i, *) = GAMMAI(a(i), x)

!P.Charsize = 2.5

SURFACE, b, a, x, XTitle = ’a’, YTitle = ’X’

Figure 9-6  Plot of incomplete gamma function. 

γ a x,( ) t a 1– e t– td
0

x

∫=
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Fatal Errors

MATH_NO_CONV_200_TS_TERMS — Function did not converge in 200 terms 
of Taylor series.

MATH_NO_CONV_200_CF_TERMS — Function did not converge in 200 terms 
of the continued fraction.

BESSI Function 
Evaluates a modified Bessel function of the first kind with real order and real or 
complex parameters.

Usage

result = BESSI(order, z)

Input Parameters

order — Real parameter specifying the desired order. Parameter order must be 
greater than –1 / 2.

z — Real or complex parameter for which the Bessel function is to be 
evaluated.

Returned Value

result — The desired value of the modified Bessel function.

Input Keywords

Double — If present and nonzero, double precision is used.

Sequence — If present and nonzero, a one-dimensional array of length n con-
taining the values of the Bessel function through the series is returned by 
BESSI, where n = N_ELEMENTS(Sequence). The i-th element of this array is 
the Bessel function of order (order + i) at z for i = 0, ... (n – 1).
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Discussion

Function BESSI evaluates a modified Bessel function of the first kind with real 
order and real or complex parameters. The data type of the returned value is 
always complex.

The Bessel function, Iv(z), is defined as follows:

For large parameters, z, Temme’s (1975) algorithm is used to find Iv(z). The 
Iv(z) values are recurred upward (if this is stable). This involves evaluating a 
continued fraction. If this evaluation fails to converge, the answer may not be 
accurate. For moderate and small parameters, Miller’s method is used.

Example

In this example, J0.3 + v–1(1.2 + 0.5i), v = 1, ... 4 is computed and printed first by 
calling BESSI four times in a row, then by using the keyword Sequence.

z = COMPLEX(1.2, .5)

FOR i = 0, 3 DO PM, BESSI(i + .3, z)

( 1.16339, 0.396301)

( 0.447264, 0.332142)

( 0.0821799, 0.127165)

( 0.00577678, 0.0286277)

PM, BESSI(.3, z, Sequence = 4), $

Title = ’With SEQUENCE:’

With SEQUENCE:

(  1.16339, 0.396301)

( 0.447264, 0.332142)

( 0.0821799, 0.127165)

( 0.00577678, 0.0286277)

Iν z( ) e νπi 2⁄– Jν zeπi 2⁄( ) for π– argz
π
2
---≤<=
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BESSJ Function 
Evaluates a Bessel function of the first kind with real order and real or com-
plex parameters.

Usage

result = BESSJ(order, z)

Input Parameters

order — Real parameter specifying the desired order. Parameter order must be 
greater than –1 / 2.

z — Real or complex parameter for which the Bessel function is to be 
evaluated.

Returned Value

result — The desired value of the Bessel function.

Input Keywords

Double — If present and nonzero, double precision is used.

Sequence — If present and nonzero, a one-dimensional array of length n con-
taining the values of the Bessel function through the series is returned by 
BESSJ, where n = NELEMENTS(Sequence). The i-th element of this array is 
the Bessel function of order (order + i) at z for i = 0, ... (n – 1).

Discussion

Function BESSJ evaluates a Bessel function of the first kind with real order and 
real or complex parameters. The data type of the returned value is always 
complex.

The Bessel function, Jv(z), is defined as follows:

Jν z( ) 1
π---

z θ νθ–sin( )dθ γπ( )sin
π------------------ ez t ν t–sinh dt

0

∞

∫–cos
0

π

∫=
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for

 

This function is based on the code BESSCC of Barnett (1981) and Thompson 
and Barnett (1987). This code computes Jv(z) from the modified Bessel function 
Iv(z), using the following relation with

:

Example

In this example, J0.3 + v–1(1.2 + 0.5i), v = 1, ..., 4 is computed and printed.

z = COMPLEX(1.2, .5)

FOR i = 0, 3 DO PM, BESSJ(i + .3, z)

( 0.773756, -0.106925)

( 0.400001,  0.158598)

(  0.0867063, 0.0920276)

( 0.00844932, 0.0239868)

PM, BESSJ(.3, z, Sequence = 4), $

Title = ’With SEQUENCE:’

With SEQUENCE:

( 0.773756, -0.106925)

( 0.400001, 0.158598)

(  0.0867063, 0.0920276)

( 0.00844932, 0.0239868)

argz
π
2
---<

ρ eiπ 2⁄=

Yν z( ) ρIν z ρ⁄( ) for π 2⁄ argz π≤<–

ρ3Iν ρ3z( ) for π argz π 2⁄≤<–
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BESSK Function 
Evaluates a modified Bessel function of the second kind with real order and real 
or complex parameters.

Usage

result = BESSK(order, z)

Input Parameters

order — Real parameter specifying the desired order. Parameter order must be 
greater than –1 /2.

z — Real or complex parameter for which the Bessel function is to be 
evaluated.

Returned Value

result — The desired value of the modified Bessel function.

Input Keywords

Double — If present and nonzero, double precision is used.

Sequence — If present and nonzero, a one-dimensional array of length n con-
taining the values of the Bessel function through the series is returned by 
BESSK, where n = NELEMENTS(Sequence). The i-th element of this array is 
the Bessel function of order (order + i) at z for i = 0, ... (n – 1). 

Discussion

Function BESSK evaluates a modified Bessel function of the second kind with 
real order and real or complex parameters. The data type of the returned value 
is always complex.

The Bessel function, Kv(z), is defined as follows:

This function is based on the code BESSCC of Thompson (1981) and Thomp-
son and Barnett (1987). For moderate or large parameters, z, Temme’s (1975) 

Kν z( ) π
2
---eνπ i 2⁄ iJν iz( ) Yν iz( )–[ ] for π argz

π
2
---≤<–=
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algorithm is used to find Kv (z). This involves evaluating a continued fraction. If 
this evaluation fails to converge, the answer may not be accurate. For small z, a 
Neumann series is used to compute Kv (z). Upward recurrence of the Kv (z) is 
always stable.

Example

In this example, K0.3 + v–1(1.2 + 0.5i), v = 1, ..., 4 is computed and printed.

z = COMPLEX(1.2, .5)

FOR i = 0, 3 DO PM, BESSK(i + .3, z)

( 0.245546, -0.199599)

( 0.335637, -0.362005)

( 0.586718, -1.12610)

( 0.719457, -4.83864)

PM, BESSK(.3, z, Sequence = 4), $

Title = ’With SEQUENCE:’

With SEQUENCE:

( 0.245546, -0.199599)

( 0.335637, -0.362005)

( 0.586718, -1.12610)

( 0.719456, -4.83864)
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BESSY Function 
Evaluates a Bessel function of the second kind with real order and real or com-
plex parameters.

Usage

result = BESSY(order, z)

Input Parameters

order — Real parameter specifying the desired order. Parameter order must be 
greater than –1 / 2.

z — Real or complex parameter for which the Bessel function is to be 
evaluated.

Returned Value

result — The desired value of the modified Bessel function.

Input Keywords

Double — If present and nonzero, double precision is used.

Sequence — If present and nonzero, a one-dimensional array of length n con-
taining the values of the Bessel function through the series is returned by 
BESSY, where n = NELEMENTS(Sequence). The i-th element of this array is 
the Bessel function of order (order + i) at z for i = 0, ... (n – 1).

Discussion

Function BESSY evaluates a Bessel function of the second kind with real order 
and real or complex parameters. The data type of the returned value is always 
complex.
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The Bessel function, Yv(z), is defined as follows:

for 

This function is based on the code BESSCC of Thompson (1981) and Thomp-
son and Barnett (1987). This code computes Yv(z) from the modified Bessel 
functions Iv(z) and Kv(z), using the following relation:

Example

In this example, Y0.3 + v–1(1.2 + 0.5i), v = 1, ..., 4 is computed and printed.

z = COMPLEX(1.2, .5)

FOR i = 0, 3 DO PM, BESSY(i + .3, z)

( -0.0131453, 0.379593)

(  -0.715533, 0.338082)

( -1.04777, 0.794969)

( -1.62487, 3.68447)

PM, BESSY(.3, z, Sequence = 4), Title = ’With SEQUENCE:’

With SEQUENCE:

( -0.0131453, 0.379593)

( -0.715533, 0.338082)

( -1.04777, 0.794969)

( -1.62487,  3.68447)

Yν z( ) 1
π
--- z θ νθ–sin( )sin dθ γπ( )sin

π
------------------ e

ν t
e

ν t– νt( )cos+[ ]e
z tsinh

dt
0

∞

∫–
0

π

∫=

argz
π
2
---<

Yν z( ) e ν 1+( )πi 2⁄ Iν z( ) 2
π
---e νπi 2⁄– Kν z( ) for π argz

π
2
---≤<––=
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BESSI_EXP Function 
Evaluates the exponentially scaled modified Bessel function of the first kind of 
orders zero and one.

Usage

result  = BESSI_EXP(order, x)

Input Parameters

order — Order of the function.  The order must be either zero or one.

x — Argument for which the function value is desired.

Returned Value 

result — The value of the exponentially scaled modified Bessel function of the 
first kind of order zero or one evaluated at x.

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

If order is zero, the Bessel function is I0(x) is defined to be

If order is one, the function I1(x) is defined to be

If order is one then BESSI_EXP underfows if  |x| / 2 underflows. 

I x x d0 0
1� � � �= �π

θ θπ cos cos

I x e dx
1 0

1� � = �π
θ θθπ cos cos
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Example

The expression e-4.5I0 (4.5) is computed directly by calling BESSI_EXP and 
indirectly by calling BESSI. The absolute difference is printed. For large x, the 
internal scaling provided by BESSI_EXP avoids overflow that may occur in 
BESSI.

Output
ans = BESSI_EXP(0, 4.5)

error = ABS(ans - EXP(-4.5)*BESSI(0, 4.5))

PRINT, ans

     0.194198

PRINT, "Error =", error

Error =   4.4703484e-08

BESSK_EXP Function 
Evaluates the exponentially scaled modified Bessel function of the third kind of 
orders zero and one.

Usage

result  = BESSK_EXP(order, x)

Input Parameters

order — Order of the function.  The order must be either zero or one.

x — Argument for which the function value is desired.

Returned Value 

result — The value of the exponentially scaled Bessel function exK0(x) or 
exK1(x)

Input Keywords

Double — If present and nonzero, double precision is used.
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Discussion

If order is zero, the Bessel function K0(x) is defined to be 

If order is one, the value of the Bessel function K1(x)

The argument x must be greater than zero for the result to be defined.

Example

The expression

is computed directly by calling BESSK_EXP and indirectly by calling BESSK. 
The absolute difference is printed. For large x, the internal scaling provided by 
BESSK_EXP avoids underflow that may occur in BESSK.

ans = BESSK_EXP(0, 0.5)

error = ABS(ans - (EXP(0.5))*BESSK(0, 0.5))

PRINT, ans

      1.52411

PRINT, "Error =", error

Error =   1.1920929e-07

Fatal Errors

MATH_SMALL_ARG_OVERFLOW — The argument x must be large enough
(x > max (1/b, s) where s is the smallest representable positive number and b is 
the largest repesentable number) that K1(x) does not overflow.

K x x t dt0 0� � � �= �∞ cos sin

I x e dx
1 0

1� � = �π
θ θθπ cos cos

eK0 05( ).
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ELK Function 
Evaluates the complete elliptic integral of the kind K(x).

Usage

result  = ELK(x)

Input Parameters

x — Argument for which the function value is desired.

Returned Value

result  — The complete elliptic integral K(x).

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

The complete elliptic integral of the first kind is defined to be

The argument x must satisfy 0 ≤ x < 1; otherwise, ELK returns the largest repre-
sentable floating-point number.

The function K(x) is computed using the routine ELRF (page 383) and the rela-
tion K(x) = RF(0, 1 − x, 1).

Example

The integral K(0) is evaluated.

PRINT, ELK(0.0)

      1.57080

K x
d

x
x� � =

−
≤ <� θ

θ

π

1
0 1

2 1 20
2

sin
/

/   for
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ELE Function 
Evaluates the complete elliptic integral of the second kind E(x).

Usage

result  = ELE(x)

Input Parameters

x — Argument for which the function value is desired.

Returned Value

result — The complete elliptic integral E(x).

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

The complete elliptic integral of the second kind is defined to be

The argument x must satisfy 0 ≤ x < 1; otherwise, ELE returns the largest repre-
sentable floating-point number.

The function E(x) is computed using the routine ELRF (page 383) and ELRD 
(page 384). The computation is done using the relation

Example

The integral E(0.33) is evaluated.

PRINT, ELE(0.33)

E x x d x� � = − ≤ <� 1 0 12 1 2

0
2 sin

// θ θπ  for 

E x R x
x

R xF D� � � � � �= − − −0 1 1
3

0 1 1, , , ,



ELRF Function  383

      1.43183 

ELRF Function 
Evaluates Carlson’s elliptic integral of the first kind RF(x, y, z).

Usage

result  = ELRF(x, y, z)

Input Parameters

x — First argument for which the function value is desired. It must be 
nonnegative.

y — Second argument for which the function value is desired. It must be 
nonnegative.

z — Third argument for which the function value is desired. It must be 
nonnegative.

Returned Value

result —  The complete elliptic integral RF(x, y, z)

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

Carlson’s elliptic integral of the second kind is defined to be

The arguments must be nonnegative and less than or equal to b/5. In addition, 
x + y, x + z, and y + z must be greater than or equal to 5s. Should any of these 
conditions fail, ELRF is set to b. Here, b is the largest and is the smallest repre-
sentable number.

R x y z
dt

t x t y t z
F , ,

/� �
� �� �� �

=
+ + +

�
∞1

2 1 2
0
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The function ELRF is based on the code by Carlson and Notis (1981) and the 
work of Carlson (1979).

Example

The integral RF(0, 1, 2) is computed.

PRINT, ELRF(0.0, 1.0, 2.0)

      1.31103

ELRD Function 
Evaluates Carlson’s elliptic integral of the second kind RD(x, y, z).

Usage

result = ELRD(x, y, z)

Input Parameters

x — First argument for which the function value is desired. It must be 
nonnegative.

y — Second argument for which the function value is desired. It must be 
nonnegative.

z — Third argument for which the function value is desired. It must be positive.

Returned Value

result —  The complete elliptic integral RD(x, y, z)

Input Keywords

Double — If present and nonzero, double precision is used.
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Discussion

Carlson’s elliptic integral of the second kind is defined to be

The arguments must be nonnegative and less than or equal to 0.69(−lnε)1/9s-2/3 
where e is the machine precision, s is the smallest representable positive num-
ber. Furthermore, x + y and z must be greater than max{3s2/3, 3/b2/3}, where b is 
the largest floating point number. If any of these conditions is false, then ELRD 
returns b.

The function ELRD is based on the code by Carlson and Notis (1981) and the 
work of Carlson (1979).

Example

The integral RD(0, 2, 1) is computed.

PRINT, ELRD(0.0, 2.0, 1.0)

      1.79721

R x y z
dt

t x t y t z
D , ,

/� �
� �� �� �

=
+ + +

�
∞3

2 3 1 2
0
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ELRJ Function 
Evaluates Carlson’s elliptic integral of the third kind RJ (x, y, z, ρ).

Usage

result  = ELRJ(x, y, z, rho)

Input Parameters

x — First argument for which the function value is desired. It must be 
nonnegative.

y — Second argument for which the function value is desired. It must be 
nonnegative.

z — Third argument for which the function value is desired. It must be positive.

rho — Fourth argument for which the function value is desired. It must be 
positive.

Returned Value

result —  The complete elliptic integral RJ (x, y, z, ρ).

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

Carlson’s elliptic integral of the third kind is defined to be

The arguments must be nonnegative. In addition, x + y, x + z, y + z and ρ must 
be greater than or equal to (5s)1/3 and less than or equal to 0.3(b/5)1/3, where s is 
the smallest representable floating-point number. Should any of these condi-
tions fail ELRJ is set to b, the largest floating-point number.

R x y z
dt

t x t y t z t
J , , ,

/
ρ

ρ
� �

� �� �� �� �
=

+ + + +
�
∞3

2 2 1 2
0



ELRC Function  387

The function ELRJ is based on the code by Carlson and Notis (1981) and the 
work of Carlson (1979). 

Example

The integral RJ (2, 3, 4, 5) is computed.

PRINT, ELRJ(2.0, 3.0, 4.0, 5.0)

     0.142976

ELRC Function 
Evaluates an elementary integral from which inverse circular functions, loga-
rithms and inverse hyperbolic functions can be computed.

Usage

result  = ELRC(x, y)

Input Parameters

x — First argument for which the function value is desired. It must be nonnega-
tive and must satisfy the conditions given below.

y — Second argument for which the function value is desired. It must be nonne-
gative and must satisfy the conditions given below.

Returned Value

result —  The elliptic integral RC (x, y).

Input Keywords

Double — If present and nonzero, double precision is used.
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Discussion

Carlson’s elliptic integral of the third kind is defined to be

The argument x must be nonnegative, y must be positive, and x + y must be less 
than or equal to b/5 and greater than or equal to 5s. If any of these conditions 
are false, the ELRC is set to b. Here, b  is the largest and s is the smallest repre-
sentable floating-point number.

The function ELRC is based on the code by Carlson and Notis (1981) and the 
work of Carlson (1979).

Example

The integral RC (2.25, 2) is computed.

PRINT, ELRC(2.25, 2.0)

     0.693147

FRESNEL_COSINE Function 
Evaluates the cosine Fresnel integral.

Usage

result  = FRESNEL_COSINE(x)

Input Parameters

x — Argument for which the function value is desired.

Returned Value 

result — The value of the cosine Fresnel integral evaluated at x.

R x y
dt

t x t y
C ,

/� �
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=
+ +

�
∞1

2 2 1 2
0
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Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

The cosine Fresnel integral is defined to be

Example 

The Fresnel integral C(1.75) is evaluated.

PRINT, FRESNEL_COSINE(1.75)

     0.321935

FRESNEL_SINE Function 
Evaluates the sine Fresnel integral.

Usage

result  = FRESNEL_SINE(x)

Input Parameters

x — Argument for which the function value is desired.

Returned Value 

result — The value of the sine Fresnel integral evaluated at x.

Input Keywords

Double — If present and nonzero, double precision is used.

C x t dt
x

( ) cos( )= � π
20

2C x t dt
x

( ) cos= � ( )
π
20

2
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Discussion

The sine Fresnel integral is defined to be

Example

The Fresnel integral S(1.75) is evaluated.

PRINT, FRESNEL_SINE(1.75)

     0.499385

AIRY_AI Function 
Evaluates the Airy function.

Usage

result  = AIRY_AI(x)

Input Parameters

x — Argument for which the function value is desired.

Returned Value 

result — The value of the Airy function evaluated at x, Ai(x).

Input Keywords

Double — If present and nonzero, double precision is used.

Derivative — If present and nonzero, then the derivative of the Airy function is 
computed.

S x t dt
x

( ) sin( )= � π
20

2
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Discussion

The airy function Ai(x) is defined to be 

The Bessel function Kv(x) is defined on page 374.

If x < −1.31ε-2/3, then the answer will have no precision. If x < −1.31ε-1/3, the 
answer will be less accurate than half precision. Here ε is the machine 
precision.

x should be less than xmax so the answer does not underflow. Very approxi-
mately, xmax = {−1.5lns}2/3, where s = the smallest representable positive 
number. 

If the keyword Derivative is set, then the airy function Ai′(x) is defined to be 
the derivative of the Airy function, Ai(x) (see page 390). If x < −1.31ε-2/3, then 
the answer will have no precision. If x < −1.31ε-1/3, the answer will be less 
accurate than half precision. Here ε is the machine precision. x should be less 
than xmax so that the answer does not underflow. Very approximately, 
xmax = {−1.51lns}, where s is the smallest representable positive number.

Example 

In this example, Ai(−4.9) and Ai′(−4.9)  are evaluated.

PRINT, AIRY_AI(-4.9)

     0.374536 

PRINT, AIRY_AI(-4.9, /Derivative)    

     0.146958

Ai x xt t dt
x

K x( ) cos( ) /
/= + =�

∞1 1

3 3

2

3
3

2
0

1 3
3 2

π π
( )



392  Chapter 9: Special Functions PV-WAVE:IMSL Mathematics Reference

AIRY_BI Function 
Evaluates the Airy function of the second kind.

Usage

result  = AIRY_BI(x)

Input Parameters

x — Argument for which the function value is desired.

Returned Value 

result — The value of the Airy function evaluated at x, Bi(x).

Input Keywords

Double — If present and nonzero, double precision is used.

Derivative — If present and nonzero, then the derivative of the Airy function of 
the second kind is computed.

Discussion

The airy function Bi(x) is defined to be 

It can also be expressed in terms of modified Bessel functions of the first kind, 
Iv(x), and Bessel functions of the first kind Jv(x) (see BESSI (page 370), and 
BESSJ (page 372)):

Bi( ) exp( ) sin( )x xt t dt xt t dt= −� + +�
∞ ∞1 1

3

1 1

3
3

0

3

0π π

Bi  for x( ) ( ) ( )/
/

/
/x

x
I x I x= +�

��
�
�� >−3

2

3

2

3
01 3

3 2
1 3

3 2
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and

Here ε is the machine precision. If x < −1.31ε-2/3, then the answer will have no 
precision. If x < −1.31ε-1/3, the answer will be less accurate than half precision. 
In addition, x should not be so large that exp[(2/3)x3/2] overflows.

If the keyword Derivative is set, the airy function Bi′(x) is defined to be the 
derivative of the Airy function of the second kind, Bi(x) (see page 392). 
If x < −1.31ε-2/3, then the answer will have no precision. If x < −1.31ε-1/3, the 
answer will be less accurate than half precision. Here ε is the machine pre-
cision. In addition, x should not be so large that exp[(2/3)x3/2] overflows.

Example

In this example, Bi(−4.9) and Bi′(-4.9) are evaluated.

PRINT, AIRY_BI(-4.9)

    -0.0577468

PRINT, AIRY_BI(-4.9, /Derivative)

     0.827219

Bi  for x( ) ( | | ) ( | | )/
/

/
/x

x
J x J x= − −�
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�
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KELVIN_BER0 Function 
Evaluates the Kelvin function of the first kind, ber, of order zero.

Usage

result  = KELVIN_BER0(x)

Input Parameters

x — Argument for which the function value is desired.

Returned Value 

result — The value of the Kelvin function of the first kind, ber, of order zero 
evaluated at x.

Input Keywords

Double — If present and nonzero, double precision is used.

Derivative — If present and nonzero, then the derivative of the Kelvin function 
of the first kind, ber, of order zero evaluated at x is computed.

Discussion

The Kelvin function ber0(x) is defined to be ℜJ0(xe3πι/4). The Bessel function 
J0(x) is defined

If the keyword Derivative is set, the function ber0′(x) is defined to be 

If |x| > 119, NaN is returned.

The function KELVIN_BER0 is based on the work of Burgoyne (1963).

J x x d0 0
1� � � �= �π

θ θπ cos sin

d

dx
xber0� �
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Example

In this example, ber0 (0.4) and ber0′ (0.6)  are evaluated.

PRINT, KELVIN_BER0(0.4)

     0.999600

PRINT, KELVIN_BER0(0.6, /DERIVATIVE)

   -0.0134985

KELVIN_BEI0 Function 
Evaluates the Kelvin function of the first kind, bei, of order zero.

Usage

result  = KELVIN_BEI0(x)

Input Parameters

x — Argument for which the function value is desired.

Returned Value 

result — The value of the Kelvin function of the first kind, bei, of order zero 
evaluated at x.

Input Keywords

Double — If present and nonzero, double precision is used.

Derivative — If present and nonzero, then the derivative of the Kelvin function 
of the first kind, bei, of order zero evaluated at x is computed.
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Discussion

The Kelvin function bie0(x) is defined to be ℑJ0(xe3πι/4). The Bessel function 
J0(x) is defined 

In KELVIN_BEI0, x must be less than 119.

If the keyword Derivative is set, the function bei0′(x) is defined to be 

If the keyword Derivative is set and |x| > 119, NaN is returned.

The function KELVIN_BEI0 is based on the work of Burgoyne (1963).

Example

In this example, bei0(0.4)  and bei0′(0.6) are evaluated.

PRINT, KELVIN_BEI0(0.4)

    0.0399982

PRINT, KELVIN_BEI0(0.6, /DERIVATIVE)

     0.299798

J x x d0 0
1� � � �= �π
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KELVIN_KER0 Function 
Evaluates the Kelvin function of the second kind, ker, of order zero.

Usage

result  = KELVIN_KER0(x)

Input Parameters

x — Argument for which the function value is desired.

Returned Value 

result — The value of the Kelvin function of the second kind, ker, of order zero 
evaluated at x.

Input Keywords

Double — If present and nonzero, double precision is used.

Derivative — If present and nonzero, then the derivative of the Kelvin function 
of the second kind, ker, of order zero evaluated at x is computed.

Discussion

The modified Kelvin function ker0(x) is defined to be ℜK0(xeπι/4). The Bessel 
function K0(x) is defined 

If the keyword Derivative is set, the function ker0′(x) is defined to be 

If x < 0, NaN (Not a Number) is returned. If x ≥ 119, then zero is returned.

The function KELVIN_KER0 is based on the work of Burgoyne (1963).

K x x t dt0 0� � � �= �∞ cos sin
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dx
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Example

In this example, ker0(0.4)  and ker0′(0.6) are evaluated.

PRINT, KELVIN_KER0(0.4)

      1.06262

PRINT, KELVIN_KER0(0.6, /DERIVATIVE)

     -1.45654

KELVIN_KEI0 Function 
Evaluates the Kelvin function of the second kind, kei, of order zero.

Usage

result  = KELVIN_KEI0(x)

Input Parameters

x — Argument for which the function value is desired.

Returned Value 

result — The value of the Kelvin function of the second kind, kei, of order zero 
evaluated at x.

Input Keywords

Double — If present and nonzero, double precision is used.

Derivative — If present and nonzero, then the derivative of the Kelvin function 
of the second kind, kei, of order zero evaluated at x is computed.

Discussion

The modified Kelvin function kei0(x) is defined to be ℑK0(xeπι/4). The Bessel 
function K0(x) is defined as

K x x t dt0 0� � � �= �∞ cos sin
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If the keyword Derivative is set, the function kei0′(x) is defined to be 

The function KELVIN_KEI0 is based on the work of Burgoyne (1963).

If x < 0, NaN (Not a Number) is returned. If x ≥ 119, zero is returned.

Example

In this example, kei0(0.4)  and kei0′(0.6) are evaluated.

PRINT, KELVIN_KEI0(0.4)

    -0.703800

PRINT, KELVIN_KEI0(0.6, /DERIVATIVE)

     0.348164

CUM_INTR Function
Evaluates the cumulative interest paid between two periods.

Usage

result = CUM_INTR (rate, n_periods, present_value, start, end_per, when)

Input Parameters

rate  Interest rate.

n_periods  Total number of payment periods. n_periods cannot be less than 
or equal to 0.

present_value  The current value of a stream of future payments, after dis-
counting the payments using some interest rate.

start  Starting period in the calculation. start cannot be less than 1; or greater 
than end_per.

end_per  Ending period in the calculation.

d

dx
xkei0( )
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when  Time in each period when the payment is made, either 0 for at the end 
of period or 1 for at the beginning of period.

Returned Value

result  The cumulative interest paid between the first period and the last 
period.  If no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function CUM_INTR evaluates the cumulative interest paid between the first 
period and the last period.

It is computed using the following:

where interesti is computed from the function INT_PAYMENT for the ith 
period.

Example

In this example, CUM_INTR computes the total interest paid for the first year 
of a 30-year $200,000 loan with an annual interest rate of 7.25%.  The pay-
ment is made at the end of each month.

PRINT, CUM_INTR(0.0725 / 12, 12*30, 200000., 1, 12, 0)

     -14436.5

_end per

i
i start

interest
=
∑
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CUM_PRINC Function
Evaluates the cumulative principal paid between two periods.

Usage

result =  CUM_PRINC (rate, n_periods, present_value, start, end_per, when)

Input Parameters

rate  Interest rate.

n_periods  Total number of payment periods. n_periods cannot be less than 
or equal to 0.

present_value  The current value of a stream of future payments, after dis-
counting the payments using some interest rate.

start  Starting period in the calculation. start cannot be less than 1; or greater 
than end_per.

end_per  Ending period in the calculation.

when  Time in each period when the payment is made, either 0 for at the end 
of period or 1 for at the beginning of period.

Returned Value

result  The cumulative principal paid between the first period and the last 
period.  If no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function CUM_PRINC evaluates the cumulative principal paid between the 
first period and the last period.
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It is computed using the following:

where principali is computed from the function PRINC_PAYMENT for the ith 
period. 

Example

In this example, CUM_PRINC computes the total principal paid for the first 
year of a 30-year $200,000 loan with an annual interest rate of 7.25%.  The 
payment is made at the end of each month.

PRINT, CUM_PRINC(0.0725 / 12, 12*30, 200000., 1, 12, 0)

     -1935.73

DEPRECIATION_DB Function
Evaluates the depreciation of an asset using the fixed-declining balance method.

Usage

result =  DEPRECIATION_DB (cost, salvage, life, period, month)

Input Parameters

cost  Initial value of the asset.

salvage  The value of an asset at the end of its depreciation period.

life  Number of periods over which the asset is being depreciated.

period  Period for which the depreciation is to be computed. period cannot be 
less than or equal to 0, and cannot be greater than life +1. 

month  Number of months in the first year. month cannot be greater than 12 
or less than 1.

_end per

i
i start

principal
=
∑



DEPRECIATION_DB Function  403

Returned Value

result  The depreciation of an asset for a specified period using the fixed-
declining balance method.  If no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function DEPRECIATION_DB computes the depreciation of an asset for a 
specified period using the fixed-declining balance method. Function 
DEPRECIATION_DB varies depending on the specified value for the argument 
period, see table below. 

where

NOTE:  rate is rounded to three decimal places.

Example

In this example, DEPRECIATION_DB computes the depreciation of an asset, 
which costs $2,500 initially, a useful life of 3 periods and a salvage value of 
$500, for each period.

ans = fltarr(4)

life = 3

Period Formula

period = 1

period = life

period other than 1 
or life

cost rate
month

� �

12

cost total depreciation from periods rate
- month
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cost = 2500

salvage = 500

life = 3

month = 6

for period = 1, life+1 DO $

ans(period-1) = depreciation_db(cost, salvage, life, $
period, month)

PM, ans

      518.750

      822.219

      480.998

      140.692

DEPRECIATION_DDB Function
Evaluates the depreciation of an asset using the double-declining balance 
method.

Usage

result =  DEPRECIATION_DDB (cost, salvage, life, period, factor)

Input Parameters

cost  Initial value of the asset.

salvage  The value of an asset at the end of its depreciation period.

life  Number of periods over which the asset is being depreciated.

period  Period for which the depreciation is to be computed. period cannot be 
greater than life. 

factor  Rate at which the balance declines. factor must be positive.

Returned Value

result  The depreciation of an asset using the double-declining balance 
method for a period specified by the user.  If no result can be computed, NaN is 
returned.
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Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function DEPRECIATION_DDB computes the depreciation of an asset using 
the double-declining balance method for a specified period.

It is computed using the following:

Example

In this example, DEPRECIATION_DDB computes the depreciation of an asset, 
which costs $2,500 initially, lasts 24 periods and a salvage value of $500, for 
each period.

ans = fltarr(24) 

life = 24

cost = 2500

salvage = 500

factor = 2

FOR period = 1, life DO $

ans(period-1) = depreciation_ddb(cost, salvage, life, $
period, factor)

PM, ans                                                           

      208.333

      190.972

      175.058

      160.470

      147.097

      134.839

      123.603

      113.302

      103.860

      95.2054

cost salvage total depreciation from prior periods-

�
��

�
	
� � factor

life
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      87.2716

      79.9990

      73.3324

      67.2214

      61.6196

      56.4846

      51.7776

      47.4628

      22.0906

      0.00000

      0.00000

      0.00000

      0.00000

      0.00000

DEPRECIATION_SLN Function
Evaluates the depreciation of an asset using the straight-line method. 

Usage

result =  DEPRECIATION_SLN (cost, salvage, life)

Input Parameters

cost  Initial value of the asset.

salvage  The value of an asset at the end of its depreciation period.

life  Number of periods over which the asset is being depreciated.

Returned Value

result  The straight line depreciation of an asset for its life.  If no result can 
be computed, NaN is returned.
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Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function DEPRECIATION_SLN computes the straight line depreciation of an 
asset for its life.

It is computed using the following:

(cost-salvage)/life

Example

In this example, DEPRECIATION_SLN computes the depreciation of an asset, 
which costs $2,500 initially, lasts 24 periods and a salvage value of $500.

PRINT, DEPRECIATION_SLN(2500, 500, 24)

      83.3333

DEPRECIATION_SYD Function
Evaluates the depreciation of an asset using the sum-of-years digits method.

Usage

result =  DEPRECIATION_SYD (cost, salvage, life, period)

Input Parameters

cost  Initial value of the asset.

salvage  The value of an asset at the end of its depreciation period.

life  Number of periods over which the asset is being depreciated.

period  Period for which the depreciation is to be computed. period cannot be 
greater than life. 
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Returned Value

result  The sum-of-years digits depreciation of an asset for a specified period.  
If no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function DEPRECIATION_SYD computes the sum-of-years digits deprecia-
tion of an asset for a specified period.

It is computed using the following:

Example

In this example, DEPRECIATION_SYD computes the depreciation of an asset, 
which costs $25,000 initially, lasts 15 years, and a salvage value of $5,000, for 
the 14th  year.

PRINT, DEPRECIATION_SYD(25000, 5000, 15, 14)

      333.333

DEPRECIATION_VDB Function
Evaluates the depreciation of an asset for any given period using the variable-
declining balance method.

Usage

result =  DEPRECIATION_VDB (cost, salvage, life, start, end_per, factor, sln)

Input Parameters

cost  Initial value of the asset.

salvage  The value of an asset at the end of its depreciation period.

( )( )
( )

cost -
+

salvage period
life life1

2

� �
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life Number of periods over which the asset is being depreciated.

start  Starting period in the calculation. start cannot be less than 1; or greater 
than end_per. 

end_per  Final period for the calculation. end_per cannot be greater than life.

factor  Rate at which the balance declines. factor must be positive.

sln  If equal to zero, do not switch to straight-line depreciation even when the 
depreciation is greater than the declining balance calculation. 

Returned Value

result  The depreciation of an asset for any given period, including partial 
periods, using the variable-declining balance method.  If no result can be com-
puted, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function DEPRECIATION_VDB computes the depreciation of an asset for any 
given period using the variable-declining balance method using the following:

If sln = 0

If sln  ≠ 0

where ddbi is computed from the function DEPRECIATION_DDB for the ith 
period. k = the first period where straight-line depreciation is greater than 

_

1

end per

i
i start

ddb
= +
∑

_

1

end per

i k

cost A salvage
A

end k=

− −+
− +∑

A ddbi
i start

k

=

= +

-

Ê
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the depreciation using the double-declining balance method.

Example

In this example, DEPRECIATION_VDB computes the depreciation of an asset 
between the 10th and 15th year, which costs $25,000 initially, lasts 15 years, and 
has a salvage value of $5,000.

 

PRINT, DEPRECIATION_VDB(25000., 5000., 15, 10, 15, 2, 0)

       976.69

DOLLAR_DECIMAL Function
Converts a fractional price to a decimal price.

Usage

result =  DOLLAR_DECIMAL (fractional_num, fraction)

Input Parameters

fractional_num  Whole number of dollars plus the numerator, as the frac-
tional part. 

fraction  Denominator of the fractional dollar. fraction must be positive.

Returned Value

result  The dollar price expressed as a decimal number. The dollar price is 
the whole number part of fractional-dollar plus its decimal part divided by frac-
tion. If no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function DOLLAR_DECIMAL converts a dollar price, expressed as a fraction, 
into a dollar price, expressed as a decimal number.
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It is computed using the following:

where idollar is the integer part of fractional_num, and ifrac is the integer part 
of log(fraction).

Example

In this example, DOLLAR_DECIMAL converts $1 1/4 to $1.25.

PRINT, DOLLAR_DECIMAL(1.1, 4)

      1.25000

DOLLAR_FRACTION Function
Converts a decimal price to a fractional price.

Usage

result =  DOLLAR_FRACTION (decimal_dollar, fraction)

Input Parameters

decimal_dollar  Dollar price expressed as a decimal number.

fraction  Denominator of the fractional dollar. fraction must be positive.

Returned Value

result  The dollar price expressed as a fraction.  The numerator is the decimal 
part of the returned value.  If no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

idollar fractional_ num idollar
fraction

ifrac

+ − ∗
+10 10 5
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Discussion

Function DOLLAR_FRACTION converts a dollar price, expressed as a deci-
mal number, into a dollar price, expressed as a fractional price. If no result can 
be computed, NaN is returned.

It can be found by solving the following

where idollar is the integer part of the decimal_dollar, and ifrac is the integer 
part of log(fraction).

Example

In this example, DOLLAR_FRACTION converts $1.25 to $1 1/4.

PRINT, DOLLAR_FRACTION(1.25, 4)

      1.10000

EFFECTIVE_RATE Function
Evaluates the effective annual interest rate.

Usage

result =  EFFECTIVE_RATE (nominal_rate, n_periods)

Input Parameters

nominal_rate  The interest rate as stated on the face of a security.

n_periods  Number of compounding periods per year.

Returned Value

result  The effective annual interest rate.  If no result can be computed, NaN 
is returned.

idollar +
-

+

decimal dollar idollar

fractionifrac

_

/10 11 6
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Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function EFFECTIVE_RATE computes the continuously-compounded interest 
rate equivalent to a given periodically-compounded interest rate. The nominal 
interest rate is the periodically-compounded interest rate as stated on the face of 
a security.

It can found by solving the following: 

Example

In this example, EFFECTIVE_RATE computes the effective annual interest rate 
of the nominal interest rate, 6%, compounded quarterly. 

PRINT, EFFECTIVE_RATE(0.06, 4)

    0.0613635

FUTURE_VALUE Function
Evaluates the future value of an investment.

Usage

result =  FUTURE_VALUE (rate, n_periods, payment, present_value, when)

Input Parameters

rate  Interest rate.

n_periods Total number of payment periods.

payment  Payment made in each period.

present_value  The current value of a stream of future payments, after 
discounting the payments using some interest rate. 

1 1+
�
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when  Time in each period when the payment is made, either 0 for at the end 
of period or 1 for at the beginning of period.

Returned Value

result  The future value of an investment.  If no result can be computed, NaN 
is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function FUTURE_VALUE computes the future value of an investment. The 
future value is the value, at some time in the future, of a current amount and a 
stream of payments.

It can be found by solving the following:

Example

In this example, FUTURE_VALUE computes the value of $30,000 payment 
made annually at the beginning of each year for the next 20 years with an 
annual interest rate of 5%.

PRINT, FUTURE_VALUE(0.05, 20, -30000.00, -30000.00, 1)

  1.12118e+06

( )( )

( )

If 0

If 0
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(1 ) 1
(1 ) 1+

=0

rate

rate

present_value payment n_periods future_value
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FUTURE_VAL_SCHD Function
Evaluates the future value of an initial principal taking into consideration a 
schedule of compound interest rates.

Usage

result =  FUTURE_VAL_SCHD (principal, schedule)

Input Parameters

principal  Principal or present value.

schedule  One-dimensional array of interest rates to apply.

Returned Value

result  The future value of an initial principal after applying a schedule of 
compound interest rates.  If no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function FUTURE_VAL_SCHD computes the future value of an initial 
principal after applying a schedule of compound interest rates.

It is computed using the following with count = N_ELEMENTS (schedule):

where schedulei  = interest rate at the ith period. 

Example

In this example, FUTURE_VAL_SCHD computes the value of a $10,000 
investment after 5 years with interest rates of 5%, 5.1%, 5.2%, 5.3% and 5.4%, 
respectively.

principal schedulei
i

count

*

=

Ê � �
1
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principal = 10000.0

schedule = [ .050, .051, .052, .053, .054 ]

PRINT, FUTURE_VAL_SCHD(principal, schedule)

      12884.8

INT_PAYMENT Function
Evaluates the interest payment for an investment for a given period.

Usage

result =  INT_PAYMENT (rate, period, n_periods, present_value, future_value, 
when)

Input Parameters

rate  Interest rate.

period Payment period.

n_periods  Total number of periods.

present_value  The current value of a stream of future payments, after 
discounting the payments using some interest rate.

future_value  The value, at some time in the future, of a current amount and 
a stream of payments.

when  Time in each period when the payment is made, either 0 for at the end 
of period or 1 for at the beginning of period.

Returned Value

result  The interest payment for an investment for a given period.  If no result 
can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.
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Discussion

Function INT_PAYMENT computes the interest payment for an investment for 
a given period.

It is computed using the following:

Example

In this example, INT_PAYMENT computes the interest payment for the second 
year of a 25-year $100,000 loan with an annual interest rate of 8%.  The pay-
ment is made at the end of each period.

PRINT, INT_PAYMENT(0.08, 2, 25, 100000.00, 0.0, 0)

     -7890.57

INT_RATE_ANNUITY Function
Evaluates the interest rate per period of an annuity.

Usage

result =  INT_RATE_ANNUITY (n_periods, payment, present_value, 
future_value, when)

Input Parameters

n_periods  Total number of periods.

payment  Payment made each period.

present_value  The current value of a stream of future payments, after 
discounting the payments using some interest rate.

future_value  The value, at some time in the future, of a current amount and 
a stream of payments.

( ) ( ) ( )1
_ 1 1 *

n_periods-1

n_periods-1

rate
present value rate payment rate when rate

rate

  +  + + +     
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when  Time in each period when the payment is made, either 0 for at the end 
of period or 1 for at the beginning of period.

Returned Value

result  The interest rate per period of an annuity.  If no result can be com-
puted, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Xguess  If present, the value is used as the initial guess at the interest rate.

Highest  If present, the value is used as the maximum value of the interest 
rate allowed.

Discussion

Function INT_RATE_ANNUITY computes the interest rate per period of an 
annuity. An annuity is a security that pays a fixed amount at equally spaced 
intervals.
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It can be found by solving the following:

Example

In this example, INT_RATE_ANNUITY computes the interest rate of a $20,000 
loan that requires 70 payments of $350 to pay off the loan.

PRINT, 12*INT_RATE_ANNUITY(70, -350, 20000, 0, 1)

    0.0734513

INT_RATE_RETURN Function
Evaluates the internal rate of return for a schedule of cash flows.

Usage

result =  INT_RATE_RETURN (values)

Input Parameters

values  One-dimensional array of cash flows which occur at regular inter-
vals, which includes the initial investment.

Returned Value

result  The internal rate of return for a schedule of cash flows.  If no result 
can be computed, NaN is returned.
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Input Keywords

Double  If present and nonzero, double precision is used.

Xguess  If present, the value is used as the initial guess at the internal rate of 
return.

Highest  If present, the value is used as the maximum value of the internal 
rate of return allowed.

Discussion

Function INT_RATE_RETURN computes the internal rate of return for a 
schedule of cash flows. The internal rate of return is the interest rate such that a 
stream of payments has a net present value of zero.

It is found by solving the following with count = N_ELEMENTS (values): 

where valuei  = the ith cash flow, rate is the internal rate of return. 

Example

In this example, INT_RATE_RETURN computes the internal rate of return for 
nine cash flows, $-800, $800, $800, $600, $600, $800, $800, $700 and $3,000, 
with an initial investment of $4,500.

values = [ -4500., -800., 800., 800., 600.,  $

            600., 800., 800., 700., 3000. ]

PRINT, INT_RATE_RETURN(values)

    0.0720820

INT_RATE_SCHD Function
Evaluates the internal rate of return for a schedule of cash flows. It is not neces-
sary that the cash flows be periodic.

Usage

result =  INT_RATE_SCHD (values, dates)
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Input Parameters

values  One-dimensional array of cash flows, which includes the initial 
investment.

dates  One-dimensional array of dates cash flows are made.  For a more 
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the 
PV-WAVE User’s Guide.

Returned Value

result  The internal rate of return for a schedule of cash flows that is not nec-
essarily periodic.  If no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Xguess  If present, the value is used as the initial guess at the internal rate of 
return.

Highest  If present, the value is used as the maximum value of the internal 
rate of return allowed.

Discussion

Function INT_RATE_SCHD computes the internal rate of return for a schedule 
of cash flows that is not necessarily periodic. The internal rate such that the 
stream of payments has a net present value of zero.

It can be found by solving the following with count = N_ELEMENTS (values):

In the equation above, di represents the ith payment date.  d1 represents the 1st 
payment date. valuei represents the ith cash flow. rate is the internal rate of 
return.
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Example

In this example, INT_RATE_SCHD computes the internal rate of return for nine 
cash flows, $-800, $800, $800, $600, $600, $800, $800, $700 and $3,000, with 
an initial investment of $4,500.

years = [1998, 1998, 1999, 2000, 2001, 2002, 2003, 2004, $
 2005, 2006]

months = [1, 10, 5, 5, 6, 7, 8, 9, 10, 11]

days = [1, 1, 5, 5, 1, 1, 30, 15, 15, 1]

dates = VAR_TO_DT(years, months, days)

v = [-4500., -800, 800, 800., 600., 600, 800, 800, 700, 3000]

PRINT, INT_RATE_SCHD(v, dates)

    0.0769003

MOD_INTERN_RATE Function
Evaluates the modified internal rate of return for a schedule of periodic cash 
flows.

Usage

result =  MOD_INTERN_RATE (values, finance_rate, reinvest_rate)

Input Parameters

values  One-dimensional array of cash flows.

finance_rate  Interest paid on the money borrowed.

reinvest_rate  Interest rate received on the cash flows.

Returned Value

result  The modified internal rate of return for a schedule of periodic cash 
flows.  If no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.
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Discussion

Function MOD_INTERN_RATE computes the modified internal rate of return 
for a schedule of periodic cash flows. The modified internal rate of return dif-
fers from the ordinary internal rate of return in assuming that the cash flows are 
reinvested at the cost of capital, not at the internal rate of return.

It also eliminates the multiple rates of return problem.

It is computed using the following:

where pnpv is calculated from the function NET_PRES_VALUE for positive 
values in values using reinvest_rate, and where nnpv is calculated from the 
function NET_PRES_VALUE for negative values in values using finance_rate.

Example

In this example, MOD_INTERN_RATE computes the modified internal rate of 
return for an investment of $4,500 with cash  flows of $-800, $800, $800, $600, 
$600, $800, $800, $700 and $3,000 for 9 years.

value = [ -4500., -800., 800., 800., 600., 600., 800., $

        800., 700., 3000. ]

finance_rate = .08

reinvest_rate = .055

PRINT, MOD_INTERN_RATE(value, finance_rate, reinvest_rate)

    0.0665972

NET_PRES_VALUE Function
Evaluates the net present value of a stream of unequal periodic cash flows, 
which are subject to a given discount rate.

Usage

result =  NET_PRES_VALUE (rate, values)
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Input Parameters

rate  Interest rate per period.

values  One-dimensional array of equally-spaced cash flows.

Returned Value

result  The net present value of an investment.  If no result can be computed, 
NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function NET_PRES_VALUE computes the net present value of an invest-
ment. Net present value is the current value of a stream of payments, after 
discounting the payments using some interest rate. 

It is found by solving the following with count = N_ELEMENTS (values): 

where valuei = the ith cash flow. 

Example

In this example, NET_PRES_VALUE computes the net present value of a $10 
million prize paid in 20 years ($50,000 per year) with an annual interest rate of 
6%.

rate = 0.06

value = FLTARR(20)

value(*) = 500000.

PRINT, NET_PRES_VALUE(rate, value)

  5.73496e+06
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NOMINAL_RATE Function
Evaluates the nominal annual interest rate.

Usage

result =  NOMINAL_RATE (effective_rate, n_periods)

Input Parameters

effective_rate  The amount of interest that would be charged if the interest 
was paid in a single lump sum at the end of the loan.

n_periods  Number of compounding periods per year.

Returned Value

result  The nominal annual interest rate.  If no result can be computed, NaN 
is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function NOMINAL_RATE computes the nominal annual interest rate. The 
nominal interest rate is the interest rate as stated on the face of a security.

It is computed using the following: 

Example

In this example, NOMINAL_RATE computes the nominal annual interest rate 
of the effective interest rate, 6.14%, compounded quarterly.

PRINT, NOMINAL_RATE(0.0614, 4)
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    0.0600348

NUM_PERIODS Function
Evaluates the number of periods for an investment for which periodic and con-
stant payments are made and the interest rate is constant.

Usage

result =  NUM_PERIODS (rate, payment, present_value, future_value, when)

Input Parameters

rate  Interest rate on the investment.

payment  Payment made on the investment.

present_value  The current value of a stream of future payments, after dis-
counting the payments using some interest rate.

future_value  The value, at some time in the future, of a current amount and 
a stream of payments.

when  Time in each period when the payment is made, either 0 for at the end 
of period or 1 for at the beginning of period.

Returned Value

result  The number of periods for an investment.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function NUM_PERIODS computes the number of periods for an investment 
based on periodic, constant payment and a constant interest rate.
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It can be found by solving the following:

Example

In this example, NUM_PERIODS computes the number of periods needed to 
pay off a $20,000 loan with a monthly payment of $350 and an annual interest 
rate of 7.25%.  The payment is made at the beginning of each period.

PRINT, NUM_PERIODS(0.0725 / 12, -350., 20000., 0., 1)

          70

PAYMENT Function
Evaluates the periodic payment for an investment.

Usage

result =  PAYMENT (rate, n_periods, present_value, future_value, when)

Input Parameters

rate  Interest rate.

n_periods  Total number of periods.

present_value  The current value of a stream of future payments, after dis-
counting the payments using some interest rate.

future_value  The value, at some time in the future, of a current amount and 
a stream of payments.

when  Time in each period when the payment is made, either 0 for at the end 
of period or 1 for at the beginning of period.
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Returned Value

result  The periodic payment for an investment.  If no result can be com-
puted, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function PAYMENT computes the periodic payment for an investment.

It can be found by solving the following:

Example

In this example, PAYMENT computes the periodic payment of a 25-year 
$100,000 loan with an annual interest rate of 8%.  The payment is made at the 
end of each period.

PRINT, PAYMENT(0.08, 25, 100000., 0., 0)

     -9367.88
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PRESENT_VALUE Function
Evaluates the net present value of a stream of equal periodic cash flows, which 
are subject to a given discount rate..

Usage

result =  PRESENT_VALUE (rate, n_periods, payment, future_value, when)

Input Parameters

rate  Interest rate.

n_periods  Total number of periods.

payment  Payment made in each period.

future_value  The value, at some time in the future, of a current amount and 
a stream of payments.

when  Time in each period when the payment is made, either 0 for at the end 
of period or 1 for at the beginning of period.

Returned Value

result  The present value of an investment.  If no result can be computed, 
NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.
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Discussion

Function PRESENT_VALUE computes the present value of an investment.

Example

In this example, PRESENT_VALUE computes the present value of 20 pay-
ments of $500,000 per payment ($10 million) with an annual interest rate of 
6%. The payment is made at the end of each period.

PRINT, PRESENT_VALUE(0.06, 20, 500000., 0., 0)

-5.73496e+06

PRES_VAL_SCHD Function
Evaluates the present value for a schedule of cash flows. It is not necessary that 
the cash flows be periodic.

Usage

result =  PRES_VAL_SCHD (rate, values, dates)

Input Parameters

rate  Interest rate.

values  One-dimensional array of cash flows.
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dates  One-dimensional array of dates cash flows are made. For a more 
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the 
PV-WAVE User’s Guide.

Returned Value

result  The present value for a schedule of cash flows that is not necessarily 
periodic.  If no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function PRES_VAL_SCHD computes the present value for a schedule of cash 
flows that is not necessarily periodic. 

It can be found by solving the following with count = N_ELEMENTS (values):

In the equation above, di represents the ith payment date, d1 represents the 1st 
payment date, and valueI represents the ith cash flow. 

Example

In this example, PRES_VAL_SCHD computes the present value of 3 payments, 
$1,000, $2,000 and $1,000, with an interest rate of 5% made on January 3, 
1997, January 3, 1999 and January 3, 2000.

rate = 0.05

values = [1000.0, 2000.0, 1000.0]

dates = VAR_TO_DT([1997, 1999, 2000], [1, 1, 1], [3, 3, 3])

PRINT, PRES_VAL_SCHD(rate, values, dates)

      3677.90

value

rate

i
d d

i

count

i1 1 365
1 +

-

=

Ê � �1 6/



432  Chapter 9: Special Functions PV-WAVE:IMSL Mathematics Reference

PRINC_PAYMENT Function
Evaluates the payment on the principal for a specified period.

Usage

result =  PRINC_PAYMENT (rate, period, n_periods, present_value, 
future_value, when)

Input Parameters

rate  Interest rate.

period  Payment period.

n_periods  Total number of periods.

present_value  The current value of a stream of future payments, after dis-
counting the payments using some interest rate.

future_value  The value, at some time in the future, of a current amount and 
a stream of payments.

when  Time in each period when the payment is made, either 0 for at the end 
of period or 1 for at the beginning of period.

Returned Value

result The payment on the principal for a given period.  If no result can be 
computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function PRINC_PAYMENT computes the payment on the principal for a given 
period.

It is computed using the following:

payment interesti i-
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where paymenti is computed from the function PAYMENT for the ith period, 
interesti is calculated from the function INT_PAYMENT for the ith period.

Example

In this example, PRINC_PAYMENT computes the principal paid for the first 
year on a 30-year $100,000 loan with an annual interest rate of 8%.  The pay-
ment is made at the end of each year.

PRINT, PRINC_PAYMENT(0.08, 1, 30, 100000., 0., 0)

     -882.742

ACCR_INT_MAT Function
Evaluates the interest which has accrued on a security that pays interest at 
maturity.

Usage

result =  ACCR_INT_MAT (issue, maturity, coupon_rate, par_value, basis)

Input Parameters

issue  The date on which interest starts accruing. For a more detailed discus-
sion on dates see Chapter 8, Working with Date/Time Data in the PV-WAVE 
User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued 
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

coupon_rate  Annual interest rate set forth on the face of the security; the 
coupon rate.

par_value  Nominal or face value of the security used to calculate interest 
payments.

basis  The method for computing the number of days between two dates. It 
should be either 0, 1, 2, 3 or 4.
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Returned Value

result  The interest which has accrued on a security that pays interest at 
maturity.  If no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function ACCR_INT_MAT computes the accrued interest for a security that 
pays interest at maturity:

In the above equation, A represents the number of days starting at issue date to 
maturity date and D represents the annual basis.

Example

In this example, ACCR_INT_MAT computes the accrued interest for a security 
that pays interest at maturity using the US (NASD) 30/360 day count method.  
The security has a par value of $1,000, the issue date of October 1, 2000, the 
maturity date of November 3, 2000, and a coupon rate of 6%.

basis PDay count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360

( )( )_
A

par value rate
D
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issue = VAR_TO_DT(2000, 10, 1)

maturity = VAR_TO_DT(2000, 11, 3)

rate = .06

par = 1000.

basis = 1

PRINT, ACCR_INT_MAT(issue, maturity, rate, par, basis)

      5.33333

ACCR_INT_PER Function
Evaluates the interest which has accrued on a security that pays interest 
periodically.

Usage

result =  ACCR_INT_PER (issue, first_coupon, settlement, coupon_rate, 
par_value, frequency, basis)

Input Parameters

issue  The date on which interest starts accruing. For a more detailed discus-
sion on dates see Chapter 8, Working with Date/Time Data in the PV-WAVE 
User’s Guide.

first_coupon  First date on which an interest payment is due on the security 
(e.g. coupon date). For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

settlement  The date on which payment is made to settle a trade. For a more 
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the 
PV-WAVE User’s Guide.

coupon_rate  Annual interest rate set forth on the face of the security; the 
coupon rate.

par_value  Nominal or face value of the security used to calculate interest 
payments.

frequency  Frequency of the interest payments.  It should be either 1, 2 or 4.
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basis  The method for computing the number of days between two dates. It 
should be either 0, 1, 2, 3 or 4.

Returned Value

result  The accrued interest for a security that pays periodic interest.  If no 
result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function ACCR_INT_PER computes the accrued interest for a security that 
pays periodic interest. 

In the equation below, Ai  represents the number days which have accrued for 
the ith  quasi-coupon period within the odd period. (The quasi-coupon periods 
are periods obtained by extending the series of equal payment periods to before 
or after the actual payment periods.) NC represents the number of quasi-coupon 

frequency Meaning

1 One payment per year 
(Annual payment)

2 Two payments per year
 (Semi-annual payment)

4 Four payments per year
(Quarterly payment)

basis PDay count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360
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periods within the odd period, rounded to the next highest integer. (The odd 
period is a period between payments that differs from the usual equally spaced 
periods at which payments are made.) NLi  represents the length of the normal 
ith quasi-coupon period within the odd period. NLI  is expressed in days. 

Function ACCR_INT_PER can be found by solving the following:

Example

In this example, ACCR_INT_PER computes the accrued interest for a security 
that pays periodic interest using the US (NASD) 30/360 day count method.  The 
security has a par value of $1,000, the issue date of October 1, 1999, the settle-
ment date of November 3, 1999, the first coupon date of March 31, 2000, and a 
coupon rate of 6%.

issue = VAR_TO_DT(1999, 10, 1)

first_coupon = VAR_TO_DT(2000, 3, 31)

settlement = VAR_TO_DT(1999, 11, 3)

rate = .06

par = 1000.

frequency = 2

basis = 1

PRINT, ACCR_INT_PER(issue, first_coupon, settlement, $
rate, par, frequency, basis)

      5.33333

BOND_EQV_YIELD Function
Evaluates the bond-equivalent yield of a Treasury bill.

Usage

result =  BOND_EQV_YIELD (settlement, maturity, discount_rate)
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Input Parameters

settlement  The date on which payment is made to settle a trade. For a more 
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the 
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued 
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

discount_rate  The interest rate implied when a security is sold for less than 
its value at maturity in lieu of interest payments.

Returned Value

result  The bond-equivalent yield of a Treasury bill.  If no result can be com-
puted, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function BOND_EQV_YIELD computes the bond-equivalent yield for a Trea-
sury bill.

It is computed using the following:

if DSM <=182

otherwise,  

In the above equation, DSM represents the number of days starting at settlement 
date to maturity date.
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Example

In this example, BOND_EQV_YIELD computes the bond-equivalent yield for a 
Treasury bill with the settlement date of July 1, 1999, the maturity date of July 
1, 2000, and discount rate of 5% at the issue date.

PRINT, BOND_EQV_YIELD(settlement, maturity, discount)

    0.052857

CONVEXITY Function
Evaluates the convexity for a security.

Usage

result =  CONVEXITY (settlement, maturity, coupon_rate, yield, frequency, 
basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more 
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the 
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued 
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

coupon_rate  Annual interest rate set forth on the face of the security; the 
coupon rate.

yield  Annual yield of the security.

frequency  Frequency of the interest payments.  It should be either 1, 2 or 4.
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basis  The method for computing the number of days between two dates. It 
should be either 0, 1, 2, 3 or 4.

Returned Value

result  The convexity for a security.  If no result can be computed, NaN is 
returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function CONVEXITY computes the convexity for a security. Convexity is the 
sensitivity of the duration of a security to changes in yield.

frequency Meaning

1 One payment per year 
(Annual payment)

2 Two payments per year
 (Semi-annual payment)

4 Four payments per year
(Quarterly payment)

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360
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It is computed using the following:

where n is calculated from the function COUPON_NUM and

.

Example

In this example, CONVEXITY computes the convexity for a security with the 
settlement date of July 1, 1990, and maturity date of July 1, 2000, using the 
Actual/365 day count method.

settlement = VAR_TO_DT(1990, 7, 1)

maturity = VAR_TO_DT(2000, 7, 1)

coupon = .075

yield = .09

frequency = 2

basis = 3

PRINT, CONVEXITY(settlement, maturity, $
coupon, yield, frequency, basis)

      59.4050

COUPON_DAYS Function
Evaluates the number of days in the coupon period containing the settlement 
date.

Usage

result =  COUPON_DAYS (settlement, maturity, frequency, basis)
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Input Parameters

settlement  The date on which payment is made to settle a trade. For a more 
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the 
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued 
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

frequency  Frequency of the interest payments.  It should be either 1, 2 or 4.

basis  The method for computing the number of days between two dates. It 
should be either 0, 1, 2, 3 or 4.

Returned Value

result   The number of days in the coupon period which contains the settle-
ment date.  If no result can be computed, NaN is returned.

frequency Meaning

1 One payment per year 
(Annual payment)

2 Two payments per year
 (Semi-annual payment)

4 Four payments per year
(Quarterly payment)

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360
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Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function COUPON_DAYS computes the number of days in the coupon period 
that contains the settlement date. For a good discussion on day count basis, see 
SIA Standard Securities Calculation Methods 1993, vol. 1, pages 17-35.

Example

In this example, COUPON_DAYS computes the number of days in the coupon 
period of a bond with the settlement date of November 11, 1996, and the matu-
rity date of March 1, 2009, using the Actual/365 day count method.

settlement = VAR_TO_DT(1996, 11, 11)

maturity = VAR_TO_DT(2009, 3, 1)

frequency =  2

basis =  3

PRINT, COUPON_DAYS(settlement, maturity, frequency, basis)

      182.500

COUPON_NUM Function
Evaluates the number of coupons payable between the settlement date and the 
maturity date.

Usage

result =  COUPON_NUM (settlement, maturity, frequency, basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more 
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the 
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued 
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.
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frequency  Frequency of the interest payments.  It should be either 1, 2 or 4.

basis  The method for computing the number of days between two dates. It 
should be either 0, 1, 2, 3 or 4.

Returned Value

result  The number of coupons payable between the settlement date and the 
maturity date.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function COUPON_NUM computes the number of coupons payable between 
the settlement date and the maturity date. For a good discussion on day count 
basis, see SIA Standard Securities Calculation Methods 1993, vol. 1, 
pages 17-35.

Example

In this example, COUPON_NUM computes the number of coupons payable 
with the settlement date of November 11, 1996, and the maturity date of March 
1, 2009, using the Actual/365 day count method.

settlement = VAR_TO_DT(1996, 11, 11)

maturity = VAR_TO_DT(2009, 3, 1)

frequency = 2

basis = 3

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360
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PRINT, COUPON_NUM(settlement, maturity, frequency, basis)

          25

SETTLEMENT_DB Function
Evaluates the number of days starting with the beginning of the coupon period 
and ending with the settlement date.

Usage

result =  SETTLEMENT_DB (settlement, maturity, frequency, basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more 
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the 
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued 
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

frequency  Frequency of the interest payments.  It should be either 1, 2 or 4.

basis  The method for computing the number of days between two dates. It 
should be either 0, 1, 2, 3 or 4.

frequency Meaning

1 One payment per year 
(Annual payment)

2 Two payments per year
 (Semi-annual payment)

4 Four payments per year
(Quarterly payment)

basis Day count basis

0 Actual/Actual
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Returned Value

result  The number of days in the period starting with the beginning of the 
coupon period and ending with the settlement date.

Input Keywords

double  If present and nonzero, double precision is used.

Discussion

Function SETTLEMENT_DB computes the number of days from the begin-
ning of the coupon period to the settlement date. For a good discussion on day 
count basis, see SIA Standard Securities Calculation Methods 1993, vol. 1, 
pages 17-35.

Example

In this example, SETTLEMENT_DB computes the number of days from the 
beginning of the coupon period to November 11, 1996, of a bond with the 
maturity date of March 1, 2009, using the Actual/365 day count method.

settlement = VAR_TO_DT(1996, 11, 11)

maturity = VAR_TO_DT(2009, 3, 1)

frequency = 2

basis = 3

PRINT, SETTLEMENT_DB(settlement, maturity, frequency, basis)

          71

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360

basis Day count basis
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COUPON_DNC Function
Evaluates the number of days starting with the settlement date and ending with 
the next coupon date.

Usage

result =  COUPON_DNC (settlement, maturity, frequency, basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more 
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the 
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued 
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

frequency  Frequency of the interest payments.  It should be either 1, 2 or 4.

basis  The method for computing the number of days between two dates. It 
should be either 0, 1, 2, 3 or 4.

frequency Meaning

1 One payment per year 
(Annual payment)

2 Two payments per year
 (Semi-annual payment)

4 Four payments per year
(Quarterly payment)

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360
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Returned Value

result  The number of days starting with the settlement date and ending with 
the next coupon date.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function COUPON_DNC computes the number of days from the settlement 
date to the next coupon date. For a good discussion on day count basis, see SIA 
Standard Securities Calculation Methods 1993, vol. 1, pp. 17-35.

Example

In this example, COUPON_DNC computes the number of days from Novem-
ber 11, 1996, to the next coupon date of a bond with the maturity date of March 
1, 2009, using the Actual/365 day count method.

settlement =  VAR_TO_DT(1996, 11, 11)

maturity = VAR_TO_DT(2009, 3, 1)

frequency = 2

basis = 3

PRINT, COUPON_DNC(settlement, maturity, frequency, basis)

         110

3 Actual/365

4 European 30/360

basis Day count basis
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DEPREC_AMORDEGRC Function
Evaluates the depreciation for each accounting period. During the evaluation of 
the function a depreciation coefficient based on the asset life is applied.

Usage

result =  DEPREC_AMORDEGRC (cost, issue, first_period, salvage, period, 
rate, basis)

Input Parameters

cost Initial value of the asset.

issue The date on which interest starts accruing. For a more detailed discus-
sion on dates see Chapter 8, Working with Date/Time Data in the PV-WAVE 
User’s Guide.

first_period Date of the end of the first period. For a more detailed discussion 
on dates see Chapter 8, Working with Date/Time Data in the PV-WAVE User’s 
Guide.

salvage  The value of an asset at the end of its depreciation period.

period  Depreciation for the accounting period to be computed.

rate  Depreciation rate.

basis  The method for computing the number of days between two dates. It 
should be either 0, 1, 2, 3 or 4.

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360
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Returned Value

result  The depreciation for each accounting period.  If no result can be com-
puted, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function DEPREC_AMORDEGRC computes the depreciation for each 
accounting period. This function is similar to DEPREC_AMORLINC. However, 
in this function a depreciation coefficient based on the asset life is applied dur-
ing the evaluation of the function. 

Example

In this example, DEPREC_AMORDEGRC computes the depreciation for the 
second accounting period using the US (NASD) 30/360 day count method.  The 
security has the issue date of November 1, 1999, end of first period of Novem-
ber 30, 2000, cost of $2,400, salvage value of $300, depreciation rate of 15%.

issue = VAR_TO_DT(1999, 11, 1)

first_period = VAR_TO_DT(2000, 11, 30)

cost = 2400.

salvage = 300.

period = 2

rate = .15

basis = 1

PRINT, DEPREC_AMORDEGRC(cost, issue, first_period, $
salvage, period, rate, basis

      335.000

DEPREC_AMORLINC Function
Evaluates the depreciation for each accounting period. This function is similar 
to DEPREC_AMORDEGRC, except that DEPREC_AMORDEGRC has a 
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depreciation coefficient that is applied during the evaluation that is based on the 
asset life.

Usage

result =  DEPREC_AMORLINC (cost, issue, first_period, salvage, period, rate, 
basis)

Input Parameters

cost  Initial value of the asset.

issue  The date on which interest starts accruing. For a more detailed discus-
sion on dates see Chapter 8, Working with Date/Time Data in the PV-WAVE 
User’s Guide.

first_period Date of the end of the first period. For a more detailed discussion 
on dates see Chapter 8, Working with Date/Time Data in the PV-WAVE User’s 
Guide.

salavge  The value of an asset at the end of its depreciation period.

period Depreciation for the accounting period to be computed.

rate  Depreciation rate.

basis  The method for computing the number of days between two dates. It 
should be either 0, 1, 2, 3 or 4.

Returned Value

result  The depreciation for each accounting period.  If no result can be com-
puted, NaN is returned.

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360
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Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function DEPREC_AMORLINC computes the depreciation for each accounting 
period.

Example

In this example, DEPREC_AMORLINC computes the depreciation for the sec-
ond accounting period using the US (NASD) 30/360 day count method.  The 
security has the issue date of November 1, 1999, end of first period of Novem-
ber 30, 2000, cost of $2,400, salvage value of $300, depreciation rate of 15%.

issue = VAR_TO_DT(1999, 11, 1)

first_period = VAR_TO_DT(2000, 11, 30)

cost = 2400.

salvage = 300.

period = 2

rate = .15

basis = 1

PRINT, DEPREC_AMORLINC(cost, issue, first_period, $
salvage, period, rate, basis)

      360.000

DISCOUNT_PR Function
Evaluates the price of a security sold for less than its face value.

Usage

result =  DISCOUNT_PR (settlement, maturity, discount_rate, redemption, 
basis)
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Input Parameters

settlement  The date on which payment is made to settle a trade. For a more 
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the 
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued 
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

discount_rate  The interest rate implied when a security is sold for less than 
its value at maturity in lieu of interest payments.

redemption  Redemption value per $100 face value of the security.

basis  The method for computing the number of days between two dates. It 
should be either 0, 1, 2, 3 or 4.

Returned Value

result  The price per face value for a discounted security.  If no result can be 
computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function DISCOUNT_PR computes the price per $100 face value of a dis-
counted security.

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360
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It is computed using the following:

In the equation above, DSM represents the number of days starting at the settle-
ment date and ending with the maturity date.  B represents the number of days 
in a year based on the annual basis.

Example

In this example, DISCOUNT_PR computes the price of the discounted bond 
with the settlement date of July 1, 2000, and maturity date of July 1, 2001, at 
the discount rate of 5% using the US (NASD) 30/360 day count method.

settlement = VAR_TO_DT(2000, 7, 1)

maturity = VAR_TO_DT(2001, 7, 1)

discount = .05

redemption = 100.

basis = 1

PRINT, DISCOUNT_PR(settlement, maturity, discount, $
redemption, basis

      95.0000

DISCOUNT_RT Function
Evaluates the interest rate implied when a security is sold for less than its value 
at maturity in lieu of interest payments. 

Usage

result =  DISCOUNT_RT (settlement, maturity, price, redemption, basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more 
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the 
PV-WAVE User’s Guide.

redemption discount rate redemption
DSM

B
-
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��
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��

�
��_� �
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maturity  The date on which the bond comes due, and principal and accrued 
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

price  Price per $100 face value of the security.

redemption  Redemption value per $100 face value of the security.

basis  The method for computing the number of days between two dates. It 
should be either 0, 1, 2, 3 or 4.

Returned Value

result  The discount rate for a security.  If no result can be computed, NaN is 
returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function DISCOUNT_RT computes the discount rate for a security. The dis-
count rate is the interest rate implied when a security is sold for less than its 
value at maturity in lieu of interest payments.

It is computed using the following:

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360

redemption price

price

B

DSM

-
�
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�
��
�
��

�
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In the equation above, B represents the number of days in a year based on the 
annual basis and DSM represents the number of days starting with the settle-
ment date and ending with the maturity date. 

Example

In this example, DISCOUNT_RT computes the discount rate of a security 
which is selling at $97.975 with the settlement date of February 15, 2000, and 
maturity date of June 10, 2000, using the Actual/365 day count method.

settlement = VAR_TO_DT(2000, 2, 15)

maturity = VAR_TO_DT(2000, 6, 10)

price = 97.975

redemption = 100.

basis = 3

PRINT, DISCOUNT_RT(settlement, maturity, price,  $
redemption, basis)

    0.0637177

DISCOUNT_YLD Function
Evaluates the annual yield of a discounted security.

Usage

result =  DISCOUNT_YLD (settlement, maturity, price, redemption, basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more 
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the 
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued 
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

price  Price per $100 face value of the security.

redemption  Redemption value per $100 face value of the security.
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basis  The method for computing the number of days between two dates. It 
should be either 0, 1, 2, 3 or 4.

Returned Value

result  The annual yield for a discounted security.  If no result can be com-
puted, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function DISCOUNT_YLD computes the annual yield for a discounted 
security.

It is computed using the following:

In the equation above, B represents the number of days in a year based on the 
annual basis, and DSM represents the number of days starting with the settle-
ment date and ending with the maturity date. 

Example

In this example, DISCOUNT_YLD computes the annual yield for a discounted 
security which is selling at $95.40663 with the settlement date of July 1, 1995, 

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360

redemption price

price

B

DSM
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�
��
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and maturity date of July 1, 2005, using the US (NASD) 30/360 day count 
method.

settlement = VAR_TO_DT(1995, 7, 1)

maturity = VAR_TO_DT(2005, 7, 1)

price = 95.40663

redemption = 105.

basis = 1

PRINT, DISCOUNT_YLD(settlement, maturity, price, redemption$
basis)
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    0.0100552

DURATION Function
Evaluates the annual duration of a security where the security has periodic inter-
est payments.

Usage

result =  DURATION (settlement, maturity, coupon_rate, yield, frequency, 
basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more 
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the 
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued 
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

coupon_rate  Annual interest rate set forth on the face of the security; the 
coupon rate.

yield  Annual yield of the security.

frequency Frequency of the interest payments.  It should be either 1, 2 or 4.

basis  The method for computing the number of days between two dates. It 
should be either 0, 1, 2, 3 or 4.

frequency Meaning

1 One payment per year 
(Annual payment)

2 Two payments per year
 (Semi-annual payment)

4 Four payments per year
(Quarterly payment)
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Returned Value

result  The annual duration of a security with periodic interest payments.  If 
no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function DURATION computes the Maccaluey’s duration of a security with 
periodic interest payments. The Maccaluey’s duration is the weighted-average 
time to the payments, where the weights are the present value of the payments.

It is computed using the following:

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360
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In the equation above, DSC represents the number of days starting with the set-
tlement date and ending with the next coupon date. E represents the number of 
days within the coupon period. N represents the number of coupons payable 
from the settlement date to the maturity date. freq represents the frequency of 
the coupon payments annually.

Example

In this example, DURATION computes the annual duration of a security with 
the settlement date of July 1, 1995, and maturity date of July 1, 2005, using the 
Actual/365 day count method.

settlement = VAR_TO_DT(1995, 7, 1)

maturity = VAR_TO_DT(2005, 7, 1)

coupon = .075

yield = .09

frequency = 2

basis = 3

PRINT, DURATION(settlement, maturity, coupon,  $
yield, frequency, basis)

      7.04195

INT_RATE_SEC Function
Evaluates the interest rate of a fully invested security.

Usage

result =  INT_RATE_SEC (settlement, maturity, investment, redemption, basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more 
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the 
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued 
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.
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investment  The total amount one has invested in the security.

redemption  Amount to be received at maturity.

basis  The method for computing the number of days between two dates. It 
should be either 0, 1, 2, 3 or 4.

Returned Value

result  The interest rate for a fully invested security.  If no result can be com-
puted, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function INT_RATE_SEC computes the interest rate for a fully invested 
security.

It is computed using the following:

In the equation above, B represents the number of days in a year based on the 
annual basis, and DSM represents the number of days in the period starting with 
the settlement date and ending with the maturity date. 

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360

redemption investment

investment
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Example

In this example, INT_RATE_SEC computes the interest rate of a $7,000 invest-
ment with the settlement date of July 1, 1995, and maturity date of July 1, 
2005, using the Actual/365 day count method.  The total amount received at the 
end of the investment is $10,000.

settlement = VAR_TO_DT(1995, 7, 1)

maturity = VAR_TO_DT(2005, 7, 1)

investment = 7000.

redemption = 10000.

basis = 3

PRINT, INT_RATE_SEC(settlement, maturity, investment,$
redemption, basis)

    0.0428219

DURATION_MAC Function
Evaluates the modified Macauley duration of a security.

Usage

result =  DURATION_MAC (settlement, maturity, coupon_rate, yield, 
frequency, basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more 
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the 
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued 
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

coupon_rate  Annual interest rate set forth on the face of the security; the 
coupon rate.

yield  Annual yield of the security.

frequency  Frequency of the interest payments.  It should be either 1, 2 or 4.
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basis  The method for computing the number of days between two dates. It 
should be either 0, 1, 2, 3 or 4.

Returned Value

result  The modified Macauley duration of a security is returned. The secu-
rity has an assumed par value of $100.  If no result can be computed, NaN is 
returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function DURATION_MAC computes the modified Macauley duration for a 
security with an assumed par value of $100.

frequency Meaning

1 One payment per year 
(Annual payment)

2 Two payments per year
 (Semi-annual payment)

4 Four payments per year
(Quarterly payment)

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360
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It is computed using the following:

where duration is calculated from the function DURATION. 

Example

In this example, DURATION_MAC computes the modified Macauley duration 
of a security with the settlement date of July 1, 1995, and maturity date of July 
1, 2005, using the Actual/365 day count method.

settlement = VAR_TO_DT(1995, 7, 1)

maturity = VAR_TO_DT(2005, 7, 1)

coupon = .075

yield = .09

frequency = 2

basis = 3

PRINT, DURATION_MAC(settlement, maturity, $
coupon, yield, frequency, basis)

      6.73871

COUPON_NCD Function
Evaluates the first coupon date which follows the settlement date.

Usage

result =  COUPON_NCD (settlement, maturity, frequency, basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more 
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the 
PV-WAVE User’s Guide.

duration

yield

frequency
1+

�
��

�
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maturity  The date on which the bond comes due, and principal and accrued 
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

frequency  Frequency of the interest payments.  It should be either 1, 2 or 4.

basis  The method for computing the number of days between two dates. It 
should be either 0, 1, 2, 3 or 4.

Returned Value

result  The first coupon date which follows the settlement date.

Input Keywords

Double  If present and nonzero, double precision is used.

frequency Meaning

1 One payment per year 
(Annual payment)

2 Two payments per year
 (Semi-annual payment)

4 Four payments per year
(Quarterly payment)

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360
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Discussion

Function COUPON_NCD computes the next coupon date after the settlement 
date. For a good discussion on day count basis, see SIA Standard Securities 
Calculation Methods 1993, vol 1, pages 17-35.

Example

In this example, COUPON_NCD computes the next coupon date of a bond with 
the settlement date of November 11, 1996, and the maturity date of March 1, 
2009, using the Actual/365 day count method.

settlement = VAR_TO_DT(1996, 11, 11)

maturity = VAR_TO_DT(2009, 3, 1)

frequency = 2

basis = 3

ans = COUPON_NCD(settlement, maturity, frequency, basis)

DT_TO_STR, ans, d, Date_Fmt=4

01/March/1997

COUPON_PCD Function
Evaluates the coupon date which immediately precedes the settlement date.

Usage

result =  COUPON_PCD (settlement, maturity, frequency, basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more 
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the 
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued 
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

fequency  Frequency of the interest payments.  It should be either 1, 2 or 4.
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basis  The method for computing the number of days between two dates. It 
should be either 0, 1, 2, 3 or 4.

Returned Value

result  The coupon date which immediately precedes the settlement date.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function COUPON_PCD computes the coupon date which immediately pre-
cedes the settlement date. For a good discussion on day count basis, see 
SIA Standard Securities Calculation Methods 1993, vol 1, pages 17-35.

frequency Meaning

1 One payment per year 
(Annual payment)

2 Two payments per year
 (Semi-annual payment)

4 Four payments per year
(Quarterly payment)

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360
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Example

In this example, COUPON_PCD computes the previous coupon date of a bond 
with the settlement date of November 11, 1986, and the maturity date of March 
1, 1999, using the Actual/365 day count method.

settlement = VAR_TO_DT(1996, 11, 11)

maturity = VAR_TO_DT(2009, 3, 1)

frequency = 2

basis = 3

ans = COUPON_PCD(settlement, maturity, frequency, basis)

DT_TO_STR, ans, d, Date_Fmt=4

PRINT, d

01/September/1996

PRICE_PERIODIC Function
Evaluates the price, per $100 face value, of a security that pays periodic 
interest.

Usage

result =  PRICE_PERIODIC (settlement, maturity, rate, yield, redemption, 
frequency, basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more 
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the 
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued 
interest are paid.

rate  Annual interest rate set forth on the face of the security; the coupon 
rate.

yield  Annual yield of the security.

redemption  Redemption value per $100 face value of the security.

frequency  Frequency of the interest payments.  It should be either 1, 2 or 4.
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basis  The method for computing the number of days between two dates. It 
should be either 0, 1, 2, 3 or 4.

Returned Value

result  The price per $100 face value of a security that pays periodic 
interest.  If no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function PRICE_PERIODIC computes the price per $100 face value of a 
security that pays periodic interest.

frequency Meaning

1 One payment per year 
(Annual payment)

2 Two payments per year
 (Semi-annual payment)

4 Four payments per year
(Quarterly payment)

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360
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It is computed using the following:

In the above equation, DSC represents the number of days in the period 
starting with the settlement date and ending with the next coupon date.  E 
represents the number of days within the coupon period.  N represents the 
number of coupons payable in the timeframe from the settlement date to the 
redemption date.  A represents the number of days in the timeframe starting 
with the beginning of coupon period and ending with the settlement date. 

Example

In this example, PRICE_PERIODIC computes the price of a bond that pays 
coupon every six months with the settlement of July 1, 1995, the maturity date 
of July 1, 2005, a annual rate of 6%, annual yield of 7% and redemption value 
of $105 using the US (NASD) 30/360 day count method.

settlement = VAR_TO_DT(1995, 7, 1)

maturity = VAR_TO_DT(2005, 7, 1)

rate = .06

yield = .07

redemption = 105.

frequency = 2

basis = 1

PRINT, PRICE_PERIODIC(settlement, maturity, rate, yield, $
redemption, frequency, basis)

      95.4067
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PRICE_MATURITY Function
Evaluates the price, per $100 face value, of a security that pays interest at 
maturity.

Usage

result =  PRICE_MATURITY (settlement, maturity, issue, rate, yield, basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more 
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the 
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued 
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

issue  The date on which interest starts accruing. For a more detailed discus-
sion on dates see Chapter 8, Working with Date/Time Data in the PV-WAVE 
User’s Guide.

rate  Annual interest rate set forth on the face of the security; the coupon 
rate.

yield  Annual yield of the security.

basis  The method for computing the number of days between two dates. It 
should be either 0, 1, 2, 3 or 4.

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360
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Returned Value

result  The price per $100 face value of a security that pays interest at matu-
rity.  If no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function PRICE_MATURITY computes the price per $100 face value of a 
security that pays interest at maturity.

It is computed using the following:

In the equation above, B represents the number of days in a year based on the 
annual basis. DSM represents the number of days in the period starting with the 
settlement date and ending with the maturity date. DIM represents the number 
of days in the period starting with the issue date and ending with the maturity 
date. A represents the number of days in the period starting with the issue date 
and ending with the settlement date.

Example

In this example, PRICE_MATURITY computes the price at maturity of a secu-
rity with the settlement date of August 1, 2000, maturity date of July 1, 2001 
and issue date of July 1, 2000, using the US (NASD) 30/360 day count method.  
The security has 5% annual yield and 5% interest rate at the date of issue.

settlement = VAR_TO_DT(2000, 8, 1)

maturity = VAR_TO_DT(2001, 7, 1)

issue = VAR_TO_DT(2000, 7, 1)

rate = .05

yield = .05

basis = 1
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PRINT, PRICE_MATURITY(settlement, maturity, issue, $
rate, yield, basis)

      99.9817

MATURITY_REC Function
Evaluates the amount one receives when a fully invested security reaches the 
maturity date.

Usage

result =  MATURITY_REC (settlement, maturity, investment, discount_rate, 
basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more 
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the 
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued 
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

investment  The total amount one has invested in the security.

discount_rate  The interest rate implied when a security is sold for less than 
its value at maturity in lieu of interest payments.

basis  The method for computing the number of days between two dates. It 
should be either 0, 1, 2, 3 or 4.

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360
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Returned Value

result  The amount one receives when a fully invested security reaches its 
maturity date.  If no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function MATURITY_REC computes the amount received at maturity for a 
fully invested security.

It is computed using the following:

In the equation above, B represents the number of days in a year based on the 
annual basis, and DIM represents the number of days in the period starting with 
the issue date and ending with the maturity date.

Example

In this example, MATURITY_REC computes the amount received of a $7,000 
investment with the settlement date of July 1, 1995, maturity date of July 1, 
2005 and discount rate of 6%, using the Actual/365 day count method.

settlement = VAR_TO_DT(1995, 7, 1)

maturity = VAR_TO_DT(2005, 7, 1)

investment = 7000.

discount = .06

basis =  3

PRINT, MATURITY_REC(settlement, maturity, investment,$ 
discount, basis)

      17521.6

investment

discount rate
DIM

B
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TBILL_PRICE Function
Evaluates the price per $100 face value of a Treasury bill.

Usage

result =  TBILL_PRICE (settlement, maturity, discount_rate)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more 
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the 
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued 
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

discount_rate  The interest rate implied when a security is sold for less than 
its value at maturity in lieu of interest payments.

Returned Value

result   The price per $100 face value of a Treasury bill.  If no result can be 
computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function TBILL_PRICE computes the price per $100 face value for a Treasury 
bill.

It is computed using the following:

100 1
360
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In the equation above, DSM represents the number of days in the period starting 
with the settlement date and ending with the maturity date (any maturity date 
that is more than one calendar year after the settlement date is excluded).

Example

In this example, TBILL_PRICE computes the price for a Treasury bill with the 
settlement date of July 1, 2000, the maturity date of July 1, 2001, and a dis-
count rate of 5% at the issue date.

settlement = VAR_TO_DT(2000, 7, 1)

maturity = VAR_TO_DT(2001, 7, 1)

discount = .05

PRINT, TBILL_PRICE(settlement, maturity, discount)

      94.9306

TBILL_YIELD Function
Evaluates the yield of a Treasury bill.

Usage

result =  TBILL_YIELD (settlement, maturity, price)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more 
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the 
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued 
interest are paid. For a more detailed discussion on dates see Chapter 8, Work-
ing with Date/Time Data in the PV-WAVE User’s Guide.

price  Price per $100 face value of the Treasury bill.

Returned Value

result  The yield for a Treasury bill.  If no result can be computed, NaN is 
returned.
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Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function TBILL_YIELD computes the yield for a Treasury bill.

It is computed using the following:

In the equation above, DSM represents the number of days in the period starting 
with the settlement date and ending with the maturity date (any maturity date 
that is more than one calendar year after the settlement date is excluded).

Example

In this example, TBILL_YIELD computes the yield for a Treasury bill with the 
settlement date of July 1, 2000, the maturity date of July 1, 2001, and priced at 
$94.93.

settlement = VAR_TO_DT(2000, 7, 1)

maturity = VAR_TO_DT(2001, 7, 1)

price = 94.93

PRINT, TBILL_YIELD(settlement, maturity, price)

    0.0526762

YEAR_FRACTION Function
Evaluates the fraction of a year represented by the number of whole days 
between two dates.

Usage

result =  YEAR_FRACTION (date_start, date_end, basis)
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Input Parameters

date_start  Initial date. For a more detailed discussion on dates see Chapter 8, 
Working with Date/Time Data in the PV-WAVE User’s Guide.

date_end  Ending date. For a more detailed discussion on dates see Chapter 
8, Working with Date/Time Data in the PV-WAVE User’s Guide.

basis  The method for computing the number of days between two dates. It 
should be either 0, 1, 2, 3 or 4.

Returned Value

result  The fraction of a year represented by the number of whole days 
between two dates.  If no result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function YEAR_FRACTION computes the fraction of the year.

It is computed using the following:

where A = the number of days from start to end, D =  annual basis.

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360

A / D
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Example

In this example, YEAR_FRACTION computes the year fraction between 
August 1, 2000, and July 1, 2001, using the US (NASD) 30/360 day count 
method.

date_start = VAR_TO_DT(2000, 8, 1)

date_end = VAR_TO_DT(2001, 7, 1)

basis = 1

PRINT, YEAR_FRACTION(date_start, date_end, basis)

     0.916667

YIELD_MATURITY Function
Evaluates the annual yield of a security that pays interest at maturity.

Usage

result =  YIELD_MATURITY (settlement, maturity, issue, rate, price, basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more 
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the 
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued 
interest are paid. For a more detailed discussion on dates see Chapter 8, 
Working with Date/Time Data in the PV-WAVE User’s Guide.

issue  The date on which interest starts accruing. For a more detailed discus-
sion on dates see Chapter 8, Working with Date/Time Data in the PV-WAVE 
User’s Guide.

rate  Interest rate at date of issue of the security.

price  Price per $100 face value of the security.

basis  The method for computing the number of days between two dates. It 
should be either 0, 1, 2, 3 or 4.
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Returned Value

result  The annual yield of a security that pays interest at maturity.  If no 
result can be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Discussion

Function YIELD_MATURITY computes the annual yield of a security that pays 
interest at maturity.

It is computed using the following:

In the equation above, DIM represents the number of days in the period start-
ing with the issue date and ending with the maturity date. DSM represents the 
number of days in the period starting with the settlement date and ending with 
the maturity date. A represents the number of days in the period starting with 
the issue date and ending with the settlement date. B represents the number of 
days in a year based on the annual basis.

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360
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Example

In this example, YIELD_MATURITY computes the annual yield of a security 
that pays interest at maturity which is selling at $95.40663 with the settlement 
date of August 1, 2000, the issue date of July 1, 2000, the maturity date of July 
1, 2010, and the interest rate of 6% at the issue using the US (NASD) 30/360 
day count method.

settlement = VAR_TO_DT(2000, 8, 1)

maturity = VAR_TO_DT(2010, 7, 1)

issue = VAR_TO_DT(2000, 7, 1)

rate = .06

price = 95.40663

basis = 1

PRINT, YIELD_MATURITY(settlement, maturity, issue, $
rate, price, basis)

    0.0673905

YIELD_PERIODIC Function
Evaluates the yield of a security that pays periodic interest.

Usage

result =  YIELD_PERIODIC (settlement, maturity, coupon_rate, price, 
redemption, frequency, basis)

Input Parameters

settlement  The date on which payment is made to settle a trade. For a more 
detailed discussion on dates see Chapter 8, Working with Date/Time Data in the 
PV-WAVE User’s Guide.

maturity  The date on which the bond comes due, and principal and accrued 
interest are paid. For a more detailed discussion on dates see Chapter 8, 
Working with Date/Time Data in the PV-WAVE User’s Guide.

coupon_rate  Annual coupon rate.

price  Price per $100 face value of the security.

redemption  Redemption value per $100 face value of the security.



YIELD_PERIODIC Function  483

frequency  Frequency of the interest payments.  It should be either 1, 2 or 4.

basis  The method for computing the number of days between two dates. It 
should be either 0, 1, 2, 3 or 4.

frequency Meaning

1 One payment per year 
(Annual payment)

2 Two payments per year
 (Semi-annual payment)

4 Four payments per year
(Quarterly payment)



484  Chapter 9: Special Functions PV-WAVE:IMSL Mathematics Reference

Returned Value

result  The yield of a security that pays interest periodically.  If no result can 
be computed, NaN is returned.

Input Keywords

Double  If present and nonzero, double precision is used.

Xguess  If present, the value is used as the initial guess at the internal rate of 
return.

Highest  If present, the value is used as the maximum value of the internal 
rate of return allowed.

Discussion

Function YIELD_PERIODIC computes the yield of a security that pays peri-
odic interest. If there is one coupon period use the following: 

In the equation above, DSR represents the number of days in the period starting 
with the settlement date and ending with the redemption date. E represents the 
number of days within the coupon period.  A represents the number of days in 
the period starting with the beginning of coupon period and ending with the 
settlement date. 

basis Day count basis

0 Actual/Actual

1 US (NASD) 30/360

2 Actual/360

3 Actual/365

4 European 30/360
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If there is more than one coupon period use the following:

In the equation above, DSC represents the number of days in the period from 
the settlement to the next coupon date. E represents the number of days within 
the coupon period. N represents the number of coupons payable in the period 
starting with the settlement date and ending with the redemption date.  A 
represents the number of days in the period starting with the beginning of the 
coupon period and ending with the settlement date.

Example

In this example, YIELD_PERIODIC computes yield of a security which is 
selling at $95.40663 with the settlement date of July 1, 1985, the maturity date 
of July 1, 1995, and the coupon rate of 6% at the issue using the US (NASD) 
30/360 day count method.

settlement = VAR_TO_DT(2000, 7, 1)

maturity = VAR_TO_DT(2010, 7, 1)

coupon_rate = .06

price = 95.40663

redemption = 105.

frequency = 2

basis = 1

PRINT, YIELD_PERIODIC(settlement, maturity, coupon_rate, $
price, redemption, frequency, basis)

    0.0700047
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Introduction
The functions for computations of basic statistics generally have relatively sim-
ple input parameters. The data are input in either a one- or two-dimensional 
array. As usual, when a two-dimensional array is used, the rows contain obser-
vations and the columns represent variables. Most of the functions in this 
chapter allow for missing values. Missing value codes can be set by using func-
tion MACHINE.

Several functions in this chapter perform statistical tests. These functions gener-
ally return a “p-value” for the test, often as the return value for the C function. 
The p-value is between 0 and 1 and is the probability of observing data that 
would yield a test statistic as extreme or more extreme under the assumption of 
the null hypothesis. Hence, a small p-value is evidence for the rejection of the 
null hypothesis.

Overview of Random Number Generation

The “Random Numbers” section describes functions for the generation of ran-
dom numbers and of random samples and permutations. These functions are 
useful for applications in Monte Carlo or simulation studies. Before using any 
of the random-number generators, the generator must be initialized by selecting 
a seed or starting value. This can be done by calling the Set keyword with the 
RANDOMOPT procedure. If the user does not select a seed, one is generated 
using the system clock. A seed needs to be selected only once in a program, 
unless two or more separate streams of random numbers are maintained. There 
are other utility functions in this chapter for selecting the form of the basic gen-
erator, restarting simulations, and maintaining separate simulation streams.

In the following discussions, the phrases “random numbers,” “random devi-
ates,” “deviates,” and “variates” are used interchangeably. The phrase 
“pseudorandom” is sometimes used to emphasize that the numbers generated 
are really not “random” since they result from a deterministic process. The use-
fulness of pseudorandom numbers is derived from the similarity, in a statistical 
sense, of samples of the pseudorandom numbers to samples of observations 
from the specified distributions. In short, while the pseudorandom numbers are 
completely deterministic and repeatable, they simulate the realizations of inde-
pendent and identically distributed random variables.
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Basic Uniform Generator

The random-number generators in this chapter use a multiplicative congruential 
method. The form of the generator is as follows:

xi = cxi – 1mod(231 – 1)

Each xi is then scaled into the unit interval (0,1). If the multiplier, c, is a primi-
tive root modulo 231 – 1 (which is a prime), then the generator has a maximal 
period of 231 – 2. However, there are several other considerations. See Knuth 
(1981) for a general discussion. The possible values for c in the generators are 
16807, 397204094, and 950706376. The selection is made by using the 
Gen_Option keyword with the RANDOMOPT procedure. The choice of 16807 
results in the fastest execution time, but other evidence suggests that the perfor-
mance of 950706376 is best among these three choices (Fishman and Moore 
1982). If no selection is made explicitly, the functions use the multiplier 16807, 
which has been in use for some time (Lewis et al. 1969).

The default action of the RANDOM function is the generation of uniform (0,1) 
numbers. This function is portable in the sense that, given the same seed, it pro-
duces the same sequence in all computer/compiler environments.

Shuffled Generators

The user also can select a shuffled version of these generators using the 
Gen_Option keyword with the RANDOMOPT procedure. The shuffled genera-
tors use a scheme due to Learmonth and Lewis (1973). In this scheme, a table 
is filled with the first 128 uniform (0,1) numbers resulting from the simple mul-
tiplicative congruential generator. Then, for each xi from the simple generator, 
the low-order bits of xi are used to select a random integer, j, from 1 to 128. 
The j-th entry in the table is then delivered as the random number, and xi, after 
being scaled into the unit interval, is inserted into the j-th position in the table. 
This scheme is similar to that of Bays and Durham (1976), and their analysis is 
applicable to this scheme as well.

Setting the Seed

Using the RANDOMOPT procedure with the Set keyword, the seed of the gen-
erator can be set and can be retrieved with the Get keyword. Prior to invoking 
any generator in this section, the user can call RANDOMOPT to initialize the 
seed, which is an integer variable with a value between 1 and 2147483647. If it 
is not initialized by RANDOMOPT, a random seed is obtained from the system 
clock. Once it is initialized, the seed need not be set again.
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If the user wants to restart a simulation, RANDOMOPT can be used to obtain 
the final seed value of one run to be used as the starting value in a subsequent 
run.

CHISQTEST Function 
Performs a chi-squared goodness-of-fit test.

Usage

result = CHISQTEST(f, n_categories, x)

Input Parameters

f — Scalar string specifying a user-supplied function. Function f accepts one 
scalar parameter and returns the hypothesized, cumulative distribution function 
at that point.

n_categories — Number of cells into which the observations are to be tallied.

x — One-dimensional array containing the vector of data elements for this test.

Returned Value 

result — The p-value for the goodness-of-fit chi-squared statistic.

Input Keywords

Double — If present and nonzero, double precision is used.

N_Params_Estimated — Number of parameters estimated in computing the 
cumulative distribution function.

Equal_Cutpoints — If present and nonzero, equal probability cutpoints are 
used. Keyword Equal_Cutpoints should not be used if Cutpoints is present.

Cutpoints — Specifies the named variable containing user-defined cutpoints to 
be used by CHISQTEST. Keywords Cutpoints and Equal_Cutpoints cannot be 
used together. 

Frequencies — Named variable into which the array containing the vector fre-
quencies for the observations stored in x is stored.
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Lower_Bound — Lower bound of the range of the distribution. If Lower Bound 
= Upper Bound, a range on the whole real line is used (the default). If the 
lower and upper endpoints are different, points outside of the range of these 
bounds are ignored. Distributions conditional on a range can be specified when 
Lower_Bound and Upper_Bound are used. If Lower_Bound is specified, then 
Upper_Bound also must be specified. By convention, Lower_Bound is excluded 
from the first interval, but Upper_Bound is included in the last interval.

Upper_Bound — Upper bound of the range of the distribution. If Lower Bound 
= Upper Bound, a range on the whole real line is used (the default). If the 
lower and upper endpoints are different, points outside of the range of these 
bounds are ignored. Distributions conditional on a range can be specified when 
Lower_Bound and Upper_Bound are used. If Upper_Bound is specified, then 
Lower_Bound also must be specified. By convention, Lower_Bound is excluded 
from the first interval, but Upper_Bound is included in the last interval.

Output Keywords

Used_Cutpoints — Specifies the named variable into which the cutpoints to be 
used by CHISQTEST are stored.

Chi_Squared — Named variable into which the chi-squared test statistic is 
stored.

Df — Named variable into which the degrees of freedom for the chi-squared 
goodness-of-fit test are stored.

Cell_Counts — Named variable into which the cell counts are stored. The cell 
counts are the observed frequencies in each of the n_categories cells.

Cell_Expected — Named variable into which the cell expected values are 
stored. The expected value of a cell is the expected count in the cell given that 
the hypothesized distribution is correct.

Cell_Chisq — Named variable into which an array of length n_categories con-
taining the cell contributions to chi-squared is stored.

Discussion

Function CHISQTEST performs a chi-squared goodness-of-fit test that a ran-
dom sample of observations is distributed according to a specified theoretical 
cumulative distribution. The theoretical distribution, which may be continuous, 
discrete, or a mixture of discrete and continuous distributions, is specified by 
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the user-defined function f. Because the user is allowed to give a range for the 
observations, a test that is conditional upon the specified range is performed.

Parameter n_categories gives the number of intervals into which the observa-
tions are to be divided. By default, equiprobable intervals are computed by 
CHISQTEST, but intervals that are not equiprobable can be specified (through 
the use of keyword Cutpoints).

Regardless of the method used to obtain the cutpoints, the intervals are such 
that the lower endpoint is not included in the interval, while the upper endpoint 
is always included. If the cumulative distribution function has discrete elements, 
then user-provided cutpoints should always be used since CHISQTEST cannot 
determine the discrete elements in discrete distributions.

By default, the lower and upper endpoints of the first and last intervals are –
infinity and +infinity. The endpoints can be specified by using the keywords 
Lower_Bound and Upper_Bound.

A tally of counts is maintained for the observations in x as follows:

•  If the cutpoints are specified by the user, the tally is made in the interval to 
which xi belongs using the endpoints specified by the user.

•  If the cutpoints are determined by CHISQTEST, then the cumulative proba-
bility at xi, F(xi), is computed by the function f.

The tally for xi is made in interval number 

, 

where m = n_categories  and 

 

is the function that takes the greatest integer that is no larger than the parame-
ter of the function. Thus, if the computer time required to calculate the 
cumulative distribution function is large, user-specified cutpoints may be pre-
ferred in order to reduce the total computing time.

If the expected count in any cell is less than 1, then a rule of thumb is that the 
chi-squared approximation may be suspect. A warning message to this effect is 
issued in this case, as well as when an expected value is less than 5.

mF xi( ) 1+

⋅
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Programming Notes 

The user must supply a function f with calling sequence F(y) that returns the 
value of the cumulative distribution function at any point y in the (optionally) 
specified range.

Many of the cumulative distribution functions in the PV-WAVE: IMSL Statis-
tics Reference can be used for f. It is, however, necessary to write a user-defined 
PV-WAVE:IMSL Mathematics function that calls the CDF, and then pass the 
name of this user-defined function for f.

Example 

This example illustrates the use of CHISQTEST on a randomly generated sam-
ple from the normal distribution. One-thousand randomly generated 
observations are tallied into 10 equiprobable intervals. In this example, the null 
hypothesis is not rejected.

.RUN

; Define the hypothesized, cumulative distribution function.

- FUNCTION user_cdf, k

-  RETURN, NORMALCDF(k)

- END

RANDOMOPT, Set = 123457

x = RANDOM(1000, /Normal)

; Generate normal deviates.

p_value = CHISQTEST("user_cdf", 10, x)

; Perform chi-squared test.

PM, p_value

; Output the results.

0.154603

Warning Errors

STAT_EXPECTED_VAL_LESS_THAN_1 — An expected value is less than 1.

STAT_EXPECTED_VAL_LESS_THAN_5 — An expected value is less than 5.
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Fatal Errors

STAT_ALL_OBSERVATIONS_MISSING — All observations contain missing 
values.

STAT_INCORRECT_CDF_1 — Function f is not a cumulative distribution 
function. The value at the lower bound must be nonnegative, and the value at 
the upper bound must not be greater than 1.

STAT_INCORRECT_CDF_2 — Function f is not a cumulative distribution 
function. The probability of the range of the distribution is not positive.

STAT_INCORRECT_CDF_3 — Function f is not a cumulative distribution 
function. Its evaluation at an element in x is inconsistent with either the evalua-
tion at the lower or upper bound.

STAT_INCORRECT_CDF_4 — Function f is not a cumulative distribution 
function. Its evaluation at a cutpoint is inconsistent with either the evaluation at 
the lower or upper bound.

STAT_INCORRECT_CDF_5 — An error has occurred when inverting the 
cumulative distribution function. This function must be continuous and defined 
over the whole real line.

FREQTABLE Function 
Tallies observations into a one-way frequency table.

Usage

result = FREQTABLE(x, nbins)

Input Parameters

x — One-dimensional array containing the observations.

nbins — Number of intervals (bins).

Returned Value

result — One-dimensional array containing the counts.



FREQTABLE Function  495

Input Keywords

Double — If present and nonzero, double precision is used.

Lower_Bound — Used with Upper_Bound to specify two semi-infinite inter-
vals that are used as the initial and last interval. The initial interval is closed on 
the right and includes Lower_Bound as its right endpoint. The last interval is 
open on the left and includes all values greater than Upper_Bound. The remain-
ing nbins − 2 intervals are of length 

(Upper_Bound – Lower_Bound) / (nbins – 2)

and are open on the left and closed on the right. The keyword Upper_Bound 
also must be specified with this keyword. Parameter nbins must be greater than 
or equal to 3 for this option.

Upper_Bound — Used along with Lower_Bound to specify two semi-infinite 
intervals that are used as the initial and last interval. The initial interval is 
closed on the right and includes Lower_Bound as its right endpoint. The last 
interval is open on the left and includes all values greater than Upper_Bound. 
The remaining nbins − 2 intervals are of length (Upper_Bound – Lower_Bound) 
/ (nbins – 2) and are open on the left and closed on the right. The keyword 
Lower_Bound must also be specified with this keyword. Parameter nbins must 
be greater than or equal to 3 for this option. 

Cutpoints — Specifies a one-dimensional array of length nbins containing the 
cutpoints to use. This option allows unequal intervals. The initial interval is 
closed on the right and contains the initial cutpoint as its right endpoint. The 
last interval is open on the left and includes all values greater than the last cut-
point. The remaining nbins − 2 intervals are open on the left and closed on the 
right. Parameter nbins must be greater than 3 for this option. If Cutpoints is 
used, then no other keywords should be specified.

Class_Marks — Specifies a one-dimensional array containing equally spaced 
class marks in ascending order. The class marks are the midpoints of each of 
the nbins, and each interval is taken to have length (Class_Marks(1) – 
Class_Marks(0)). Parameter nbins must be greater than or equal to 2 for this 
option. If Class_Marks is used, then no other keywords should be specified.

Discussion

The default action of FREQTABLE is to group data into nbins categories of 
size (max (x) – min (x)) / nbins. The initial interval is closed on the left and 
open on the right. The remaining intervals are open on the left and closed on 
the right. Using keywords, the types of intervals used may be changed.
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If Upper_Bound and Lower_Bound are specified, two semi-infinite intervals are 
used as the initial and last interval. The initial interval is closed on the right and 
includes Lower_Bound as its right endpoint. The last interval is open on the left 
and includes all values greater than Upper_Bound. The remaining nbins − 2 
intervals are of length (Upper_Bound – Lower_Bound) / (nbins – 2) and are 
open on the left and closed on the right. Parameter nbins must be greater than 
or equal to 3 for this option.

If keyword Class_Marks is used, equally spaced class marks in ascending order 
must be provided in an array of length nbins. The class marks are the mid-
points of each of the nbins, and each interval is taken to have the following 
length:

(Class_Marks(1) – Class_Marks(0))

Parameter nbins must be greater than or equal to 2 for this option. 

If keyword Cutpoints is used, cutpoints (bounders) must be provided in an array 
of length nbins. This option allows unequal intervals. The initial interval is 
closed on the right and contains the initial cutpoint as its right endpoint. The 
last interval is open on the left and includes all values greater than the last cut-
point. The remaining nbins − 2 intervals are open on the left and closed on the 
right. Parameter nbins must be greater than 3 for this option.

Example
The data for this example is from Hinkley (1977) and Velleman and Hoaglin 
(1981). Data includes measurements (in inches) of precipitation in Minneapolis/
St. Paul during the month of March for 30 consecutive years.

x = [0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47,$

1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10,$

0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81,$

1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89,$

0.90, 2.05]

; Define the data set.

table = FREQTABLE(x, 10)

; Call FREQTABLE with nbins = 10.

PRINT, ’   Bin Number  Count’ &$

PRINT, ’   ----------  -----’  &$

FOR i = 0, 9 DO PRINT, i + 1, table(i)

Bin Number  Count

----------  -----

 1      4.00000
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 2      8.00000

 3      5.00000

 4      5.00000

 5      3.00000

 6      1.00000

 7      3.00000

 8      0.00000

 9      0.00000

 10 1.00000

RANKS Function 
Computes the ranks, normal scores, or exponential scores for a vector of 
observations.

Usage

result = RANKS(x)

Input Parameters

x — One-dimensional array containing the observations to be ranked. 

Returned Value

result — A one-dimensional array containing the rank (or optionally, a transfor-
mation of the rank) of each observation.

Input Keywords

Double — If present and nonzero, double precision is used.

Average_Tie, or
Highest, or
Lowest, or
Random_Split — At most, one of these keywords can be set to a nonzero value 
to change the method used to assign a score to tied observations. 
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Fuzz — Value used to determine when two items are tied. If ABS(x(I) – x(J)) is 
less than or equal to Fuzz, then x(I) and x(J) are said to be tied.

Default: Fuzz = 0.0

Ranks, or
Blom_Scores, or
Tukey_Scores, or
Vdw_Scores, or
Exp_Norm_Scores, or
Savage_Scores — At most, one of these keywords can be set to a nonzero 
value to specify the type of values returned.

Discussion

Ties

If the assignment RANK = RANKS(x) is made, then in data without ties, the 
output values are the ordinary ranks (or a transformation of the ranks) of the 

Keyword Method

Average_Tie average of the scores of the tied observations (default)

Highest highest score in the group of ties

Lowest lowest score in the group of ties

Random_Split tied observations are randomly split using a random-number 
generator

Keyword Result

Ranks ranks (default)

Blom_Scores Blom version of normal scores

Tukey_Scores Tukey version of normal scores

Vdw_Scores Van der Waerden version of normal scores

Exp_Norm_Scores expected value of normal order statistics (for tied obser-
vations, the average of the expected normal scores)

Savage_Scores Savage scores (expected value of exponential order 
statistics)
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data in x. If x(i) has the smallest value among the values in x and there is no 
other element in x with this value, then RANK(i) = 1. If both x(i) and x(j) have 
the same smallest value, then the output value depends on the option used to 
break ties.

When the ties are resolved randomly, function RANDOM (page 506) is used to 
generate random numbers. Different results occur from different executions of 
the program unless the “seed” of the random-number generator is set explicitly 
by use of the function RANDOMOPT ( ).

Scores

Normal and other functions of the ranks can optionally be returned. Normal 
scores can be defined as the expected values, or approximations to the expected 
values, of order statistics from a normal distribution. The simplest approxima-
tions are obtained by evaluating the inverse cumulative normal distribution 
function, NORMALCDF (with keyword Inverse), at the ranks scaled into the 
open interval (0,1). 

In the Blom version (Blom 1958), the scaling transformation for the
rank ri (1 ≤ ri ≤ n, where n is the sample size) is (ri – 3 / 8) / (n + 1 / 4). The 
Blom normal score corresponding to the observation with rank ri is 

where Φ(⋅) is the normal cumulative distribution function.

Adjustments for ties are made after the normal score transformation; that is, if 
x(i) equals x(j) (within Fuzz) and their value is the k-th smallest in the data set, 
the Blom normal scores are determined for ranks of k and k + 1. Then, these 
normal scores are averaged or selected in the manner specified. (Whether the 

Keyword Result

Average_Tie result ( i ) = result ( j ) = 1.5

Highest result ( i ) = result ( j ) = 2.0

Lowest result ( i ) = result ( j ) = 1.0

Random_Split result ( i ) = 1.0 and result ( j ) = 2.0
or, randomly, result ( i ) = 2.0 and result ( j ) = 1.0

Φ 1– ri 3 8⁄–
n 1 4⁄+
-------------------
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transformations are made first or the ties are resolved first is irrelevant, except 
when Average_Tie is specified.)

In the Tukey version (Tukey 1962), the scaling transformation for the rank ri is 
(ri – 1 / 3) / (n + 1 / 3). The Tukey normal score corresponding to the observa-
tion with rank ri follows: 

Ties are handled in the same way as for the Blom normal scores.

In the Van der Waerden version (see Lehmann 1975, p. 97), the scaling transfor-
mation for the rank ri is ri / (n + 1). The Van der Waerden normal score 
corresponding to the observation with rank ri is as follows: 

Ties are handled in the same way as for the Blom normal scores.

When option Exp_Norm_Scores is nonzero, the output values are the expected 
values of the normal order statistics from a sample of size 
n = N_ELEMNTS(x). If the value in x(i) is the k-th smallest, then the value out-
put in RANK (i) is E(zk), where E(·) is the expectation operator, and zk is the 
k-th order statistic in a sample of size n from a standard normal distribution. 
Ties are handled in the same way as for the Blom normal scores.

Savage scores are the expected values of the exponential order statistics from a 
sample of size n. These values are called Savage scores because of their use in 
a test discussed by Savage (1956) and Lehmann (1975). If the value in x(i) is 
the k-th smallest, then the value output in RANK (i) is E(yk) where yk is the k-th 
order statistic in a sample of size n from a standard exponential distribution. 
The expected value of the k-th order statistic from an exponential sample of size 
n follows:

 

Ties are handled in the same way as for the Blom normal scores.

Φ 1– ri 1 3⁄–
n 1 3⁄+
-------------------

 
 
 

Φ 1– ri

n 1+
------------

 
 
 

1
n
---

1
n 1–
------------ … 1

n k– 1+
---------------------+ + +
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Example

The data for this example, from Hinkley (1977), contains 30 observations. Note 
that the fourth and sixth observations are tied, and the third and twentieth obser-
vations are tied.

x = [0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47,$

1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10,$

0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81,$

1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89,$

0.90, 2.05]

r = RANKS(x)

; Call RANKS.

FOR i = 0, 29 DO PM, i + 1, r(i), Format = ’(i5, f7.1)’

 1    5.0

 2   18.0

 3    6.5

 4   11.5

 5   21.0

 6   11.5

 7    2.0

 8   15.0

 9   29.0

 10   24.0

 11   27.0

 12   28.0

 13   16.0

 14   23.0

 15    3.0

 16   17.0

 17   13.0

 18    1.0

 19    4.0

 20    6.5

 21   26.0

 22   19.0

 23   10.0

 24   14.0

 25   30.0

 26   25.0

 27    9.0

 28   20.0
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 29    8.0

 30   22.0

RANDOMOPT Procedure 
Uses keywords to set or retrieve the random number seed or to select the form 
of the IMSL random number generator.

Usage

RANDOMOPT

Input Parameters

Procedure RANDOMOPT does not have any positional Input Parameters. Key-
words are required for specific actions to be taken.

Input Keywords

Gen_Option — Indicator of the generator. The random-number generator is a 
multiplicative, congruential generator with modulus 231 – 1. Keyword 
Gen_Option is used to choose the multiplier and to determine whether or not 
shuffling is done.

Set — Seed of the random-number generator. The seed must be in the range 
(0, 2147483646). If the seed is zero, a value is computed using the system 

Gen_Option Generator

1 multiplier 16807 used (default)

2 multiplier 16807 used with shuffling

3 multiplier 397204094 used

4 multiplier 397204094 used with shuffling

5 multiplier 950706376 used

6 multiplier 950706376 used with shuffling

7 GFSR, with the recursion Xt = Xt-1563 ⊕ Xt-96 
is used
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clock; hence, the results of programs using the PV- WAVE:IMSL Statistics ran-
dom-number generators are different at various times.

Substream_seed — If present and nonzero, then  a seed for the congruential 
generators that do not do shuffling that will generate random numbers begin-
ning 100,000 numbers farther along will be returned in keyword Get.  If 
keyword Substream_seed is set, then keyword Get is required.

Output Keywords

Get — Named variable into which the value of the current random-number seed 
is stored.

Current_option — Named variable into which the value of the current random-
number generator option is stored.

Discussion 

Procedure RANDOMOPT is designed to allow a user to set certain key ele-
ments of the random-number generator functions.

The uniform pseudorandom-number generators use a multiplicative congruen-
tial method, or a generalized feedback shift register. The choice of  generator is 
determined by keyword Gen_Option. The chapter introduction and the descrip-
tion of function RANDOM may provide some guidance in the choice of the 
form of the generator. If no selection is made explicitly, the generators use the 
multiplier 16807 without shuffling. This form of the generator has been in use 
for some time (Lewis et al. 1969).

Keyword Set is used to initialize the seed used in the PV- WAVE:IMSL Statis-
tics random-number generators. See the chapter introduction for details of the 
various gererator options. The seed can be reinitialized to a clock-dependent 
value by calling RANDOMOPT with Set set to zero.

A common use of keyword Set is in conjunction with the keyword Get to restart 
a simulation. Keyword Get retrieves the current value of the “seed” used in the 
random-number generators. 

If keyword Substream_seed is set, RANDOMOPT  determines another seed, 
such that if one of the IMSL multiplicative congruential generators, using no 
shuffling, went through 100,000 generations starting with Substream_seed, the 
next number in that sequence would be the first number in the sequence that 
begins with the returned seed.
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Note that Substream_seed works only when a multiplicative congruential gener-
ator without shuffling is used. This means that either the routine RANDOMOPT 
has not been called at all or that it has been last called with Gen_Option having 
a value of 1, 3, or 5.

For many of the IMSL generators for nonuniform distributions that do not use 
the inverse CDF method, the distance between the sequences generated starting 
with Substream_seed and starting with the returned seed may be less than 
100,000. This is because the nonuniform generators that use other techniques 
may require more than one uniform deviate for each output deviate.

The reason that one may want two seeds that generate sequences a known dis-
tance apart is for blocking Monte Carlo experiments or for running parallel 
streams.

Example 1

This example illustrates the statements required to restart a simulation using the 
keywords Get and Set. The example shows that restarting the sequence of ran-
dom numbers at the value of the last seed generated is the same as generating 
the random numbers all at once.
seed = 123457

nrandom = 5

RANDOMOPT, Set = seed

; Set the seed using the keyword Set.

r1 = RANDOM(nrandom)

PM, r1, Title = ’First Group of Random Numbers’

First Group of Random Numbers

 0.966220

 0.260711

 0.766262

 0.569337

 0.844829

RANDOMOPT, Get = seed

; Get the current value of the seed using the keyword Get.

RANDOMOPT, Set = seed

; Set the seed. 

r2 = RANDOM(nrandom)

PM, r2, $

Title = ’Second Group of Random Numbers’

Second Group of Random Numbers
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 0.0442665

 0.987184

 0.601350

 0.896375

 0.380854

RANDOMOPT, Set = 123457

; Reset the seed to the original seed.

r3 = RANDOM(2 * nrandom)

PM, r3, Title = ’Both Groups of Random Numbers’

Both Groups of Random Numbers

 0.966220

 0.260711

 0.766262

 0.569337

 0.844829

 0.0442665

 0.987184

 0.601350

 0.896375

 0.380854

Example 2

In this example, RANDOMOPT is used to determine seeds for 4 separate 
streams, each 200,000 numbers apart, for a multiplicative congruential generator 
without shuffling. (Since RANDOMOPT is not invoked to select a generator, 
the multiplier is 16807.) Since the streams are 200,000 numbers apart, each 
seed requires two invocations of RANDOMOPT with keyword Substream_seed.  
All of the streams are non-overlapping, since the period of the underlying gen-
erator is 2,147,483,646.

RANDOMOPT, GEN_OPTION = 1

is1 = 123457;

RANDOMOPT, Get = itmp, Substream_seed = is1

RANDOMOPT, Get = is2, Substream _seed = itmp

RANDOMOPT, Get = itmp, Substream _seed = is2

RANDOMOPT, Get = is3, Substream _seed = itmp

RANDOMOPT, Get = itmp, Substream _seed = is3

RANDOMOPT, Get = is4, Substream _seed = itmp

PRINT, is1, is2, is3, is4

      123457  2016130173    85016329   979156171
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RANDOM Function 
Generates pseudorandom numbers. The default distribution is a uniform (0, 1) 
distribution, but many different distributions can be specified through the use of 
keywords.

Usage

result = RANDOM(n)

Generally, it is best to first identify the desired distribution from the 
“Discussion” section, then refer to the “Input Keywords” section for specific 
usage instructions.

Input Parameters

n — Number of random numbers to generate. 

Returned Value

result — A one-dimensional array of length n containing the random numbers. 
If one of the keywords Sphere, Multinomial,  or Mvar_Normal are used, then a 
two-dimensional array is returned.

Input Keywords

Double — If present and nonzero, double precision is used.

Parameters — Specifies parameters for the distribution used by RANDOM to 
generate numbers. Some distributions require this keyword to execute success-
fully.  The type and range of these parameters depends upon which distribution 
is specified. See the keyword for the desired distribution or the Discussion sec-
tion for more details.

Beta — If present and nonzero, the random numbers are generated from a beta 
distribution.  Requires the Parameters keyword to specify the parameters (p, q) 
for the distribution. The parameters p and q must be positive.

Binomial — If present and nonzero, the random numbers are generated from a 
binomial distribution. Requires the Parameters keyword to specify the parame-
ters (p, n) for the distribution. The parameter n is the number of Bernoulli trials, 
and it must be greater than zero. The parameter p represents the probability of 
success on each trial, and it must be between 0.0 and 1.0.
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Cauchy — If present and nonzero, the random numbers are generated from a 
Cauchy distribution.

Chi_squared — If present and nonzero, the random numbers are generated 
from a chi-squared distribution. Requires the Parameters keyword to specify the 
parameter Df for the distribution. The parameter Df is the number of degrees of 
freedom for the distribution, and it must be positive.

Discrete_unif — If present and nonzero, the random numbers are generated 
from a discrete uniform distribution. Requires the Parameters keyword to spec-
ify the parameter k for the distribution. This generates integers in the range 
from 1 to k (inclusive) with equal probability. The parameter k must be positive.

Exponential — If present and nonzero, the random numbers are generated from 
a standard exponential distribution.

Gamma — If present and nonzero, the random numbers are generated from a 
standard Gamma distribution. Requires the Parameters keyword to specify the 
parameter a for the distribution.  The parameter a is the shape parameter of the 
distribution, and it must be positive n.

Geometric — If present and nonzero, the random numbers are generated from a 
geometric distribution. Requires the Parameters keyword to specify the parame-
ter P for the distribution. The parameter P must be positive and less than 1.0.

Hypergeometric — If present and nonzero, the random numbers are generated 
from a hypergeometric distribution. Requires the Parameters keyword to spec-
ify the parameters (M, N, L) for the distribution. The parameter N represents the 
number of items in the sample, M is the number of special items in the popula-
tion, and L is the total number of items in the population.  The parameters N 
and M must be greater than zero, and L must be greater than both N and M.

Logarithmic — If present and nonzero, the random numbers are generated from 
a logarithmic distribution. Requires the Parameters keyword to specify the 
parameter a for the distribution. The parameter a must be greater than zero.

Lognormal — If present and nonzero, the random numbers are generated from 
a lognormal distribution. Requires the Parameters keyword to specify the 
parameters (µ, σ) for the distribution. The parameter µ is the mean of the distri-
bution, while σ represents the standard deviation.

Mix_Exponential — If present and nonzero, the random numbers are gener-
ated from a mixture of two exponential distributions. Requires the Parameters 
keyword to specify the parameters (θ1, θ2, p) for the distribution.  The parame-
ters θ1 and θ2 are the means for the two distributions; both must be positive, 
and θ1 must be greater than θ2. The parameter p is the relative probability of the 
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θ1 distribution, and it must be non-negative and less than or equal to 
θ1/( θ1- θ2).

Neg_binomial — If present and nonzero, the random numbers are generated 
from a  negative binomial distribution. Requires the Parameters keyword to 
specify the parameters (r, p) for the distribution. The parameter r must be 
greater than zero. If r is an integer, the generated deviates can be thought of as 
the number of failures in a sequence of Bernoulli trials before r successes occur. 
The parameter p is the probability of success on each trial. It must be greater 
than the machine epsilon, and less than 1.0.

Normal — If present and nonzero, the random numbers are generated from a 
standard normal distribution using an inverse CDF method. 

Permutation — If present and nonzero, then generate a pseudorandom 
permutation. 

Poisson — If present and nonzero, the random numbers are generated from a 
Poisson distribution.  Requires the Parameters keyword to specify the parame-
ter θ for the distribution.  The parameter θ represents the mean of the 
distribution, and it must be positive.

Sample_indices— If present and nonzero, generate a simple pseudorandom 
sample of indices. Requires the Parameters keyword to specify the parameter 
npop, the number of items in the population.

Sphere— If present and nonzero, the random numbers are generated on a unit 
circle or K-dimensional sphere. Requires the Parameters keyword to specify the 
parameter k, the dimension of the circle (k = 2) or of the sphere.

Stable — If present and nonzero, the random numbers are generated from a sta-
ble distribution. Requires the Parameters keyword to specify the parameters A 
and bprime  for the stable distribution. A is the characteristic exponent of the 
stable distribution. A must be positive and less than or equal to 2. bprime is 
related to the usual skewness parameter β of the stable distribution.

Student_t — If present and nonzero, the random numbers are generated from a 
Student’s t distribution. Requires the Parameters keyword to specify the param-
eter Df for the distribution. The Df parameter is the number of degrees of 
freedom for the distribution, and it must be positive.

Triangular — If present and nonzero, the random numbers are generated from 
a triangular distribution.

Uniform — If present and nonzero, the random numbers are generated from a 
uniform (0, 1) distribution. The default action of this returns random numbers 
from a uniform (0, 1) distribution.
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Von_mises — If present and nonzero, the random numbers are generated from a 
von Mises distribution. Requires the Parameters keyword to specify the param-
eter c for the function. The parameter c must be greater than one-half the 
machine epsilon.

Weibull — If present and nonzero, the random numbers are generated from a 
Weibull distribution.  Requires the Parameters keyword to specify the parame-
ters (a, b) for the distribution.  The parameter a is the shape parameter, and it is 
required. The parameter b is the scale parameter, and is optional 
(Default: b = 1.0).

Mvar_Normal — If present and nonzero, the random numbers are generated 
from a multivariate normal distribution. Keywords Mvar_Normal and 
Covariances must be specified to return numbers from a multivariate normal 
distribution.

Covariances — Two-dimensional, square matrix containing the variance-covari-
ance matrix. The two-dimensional array returned by RANDOM is of the 
following size:

n by N_ELEMENTS(Covariances(*, 0))

Keywords Mvar_Normal and Covariances must be specified to return numbers 
from a multivariate normal distribution.

Multinomial — If present and nonzero, the random numbers are generated from 
a multinomial distribution. Requires the Parameters keyword to specify the 
parameter (ntrials) for the distribution, and the keyword Probabilities to spec-
ify the array containing the probabilities of the possible outcomes. The value if 
ntrials is the multinomial parameter indicating the number of independent trials.

Probabilities — Specifies the array containing the probabilities of the possible 
outcomes. The elements of P must be positive and must sum to 1.0.

Keywords Multinomial and Probabilities must be specified to return numbers 
from a Multinomial distribution.

NOTE  The keywords A, Pin, Qin, and Theta are still supported, but are now 
deprecated.  Please use the Parameters keyword instead.

Discussion

Function RANDOM is designed to return random numbers from any of a num-
ber of different distributions. The determination of which distribution to 
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generate the random numbers from is based on the presence of a keyword or 
groups of keywords. If RANDOM is called without any keywords, then ran-
dom numbers from a uniform (0, 1) distribution are returned.

Uniform (0,1) Distribution

The default action of RANDOM generates pseudorandom numbers from a uni-
form (0, 1) distribution using a multiplicative, congruential method. The form 
of the generator follows:

xi ≡ cxi - 1mod (231 – 1) 

Each xi is then scaled into the unit interval (0, 1). The possible values for c in 
the generators are 16807, 397204094, and 950706376. The selection is made by 
using the RANDOMOPT procedure with the Gen_Option keyword. The choice 
of 16807 results in the fastest execution time. If no selection is made explicitly, 
the functions use the multiplier 16807. See RANDOMOPT on page 502 for 
futher discussion of generator options.

The RANDOMOPT procedure called with the Set keyword is used to initialize 
the seed of the random-number generator.

The user can select a shuffled version of these generators. In this scheme, a 
table is filled with the first 128 uniform (0, 1) numbers resulting from the sim-
ple multiplicative congruential generator. Then, for each xi from the simple 
generator, the low-order bits of xi are used to select a random integer, j, from 1 
to 128. The j-th entry in the table is then delivered as the random number, and 
xi, after being scaled into the unit interval, is inserted into the j-th position in 
the table.

The values returned are positive and less than 1.0. Some values returned may be 
smaller than the smallest relative spacing; however, it may be the case that 
some value, for example r(i), is such that 1.0 – r(i) = 1.0.

Deviates from the distribution with uniform density over the interval (a, b) can 
be obtained by scaling the output. See Example 3 on page 523 for more details.

Normal Distribution

Calling RANDOM with keyword Normal generates pseudorandom numbers 
from a standard normal (Gaussian) distribution using an inverse CDF tech-
nique. In this method, a uniform (0,1) random deviate is generated. Then, the 
inverse of the normal distribution function is evaluated at that point using the 
NORMALCDF function with keyword Inverse.
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If the Parameters keyword is specified in addition to Normal, RANDOM gener-
ates pseudorandom numbers using an acceptance/rejection technique due to 
Kinderman and Ramage (1976). In this method, the normal density is repre-
sented as a mixture of densities over which a variety of acceptance/rejection 
methods due to Marsaglia (1964), Marsaglia and Bray (1964), and Marsaglia et 
al. (1964) are applied. This method is faster than the inverse CDF technique.

Deviates from the normal distribution with mean specific mean and standard 
deviation can be obtained by scaling the output from RANDOM. See Example 
3 on page 523 for more details. 

Exponential Distribution

Calling RANDOM with keyword Exponential generates pseudorandom numbers 
from a standard exponential distribution. The probability density function is 
f(x) = e–x, for x > 0. Function RANDOM uses an antithetic inverse CDF tech-
nique. In other words, a uniform random deviate U is generated, and the inverse 
of the exponential cumulative distribution function is evaluated at 1.0 – U to 
yield the exponential deviate.

Poisson Distribution

Calling RANDOM with keywords Poisson and Parameters= θ generates pseu-
dorandom numbers from a Poisson distribution with positive mean θ. The 
probability function follows:

, for 

If θ is less than 15, RANDOM uses an inverse CDF method; otherwise, the 
PTPE method of Schmeiser and Kachitvichyanukul (1981) is used. (See also 
Schmeiser 1983.) The PTPE method uses a composition of four regions, a trian-
gle, a parallelogram, and two negative exponentials. In each region except the 
triangle, acceptance/rejection is used. The execution time of the method is 
essentially insensitive to the mean of the Poisson.

Gamma Distribution

Calling RANDOM with keywords Gamma and Parameters=a generates pseudo-
random numbers from a Gamma distribution with shape parameter a and unit 
scale parameter. The probability density function follows:

f x( ) e
θ– θx( ) x!⁄= x 0 1 2 …, , ,=

f x( )
1

Γ a( )
----------xa 1– e x–= for x 0≥
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Various computational algorithms are used depending on the value of the shape 
parameter a. For the special case of a = 0.5, squared and halved normal devi-
ates are used; for the special case of a = 1.0, exponential deviates are generated. 
Otherwise, if a is less than 1.0, an acceptance-rejection method due to Ahrens, 
described in Ahrens and Dieter (1974), is used. If a is greater than 1.0, a 10-
region rejection procedure developed by Schmeiser and Lal (1980) is used.

The Erlang distribution is a standard Gamma distribution with the shape param-
eter having a value equal to a positive integer; hence, RANDOM generates 
pseudorandom deviates from an Erlang distribution with no modifications 
required.

Beta Distribution

Calling RANDOM with keywords Beta, and Parameters=[p,q] generates pseu-
dorandom numbers from a beta distribution. With p and q both positive, the 
probability density function is 

where Γ(·) is the Gamma function.

The algorithm used depends on the values of p and q. Except for the trivial 
cases of p = 1 or q = 1, in which the inverse CDF method is used, all the meth-
ods use acceptance/rejection. If p and q are both less than 1, the method of 
Jöhnk (1964) is used. If either p or q is less than 1 and the other is greater than 
1, the method of Atkinson (1979) is used. If both p and q are greater than 1, 
algorithm BB of Cheng (1978), which requires very little setup time, is used if x 
is less than 4, and algorithm B4PE of Schmeiser and Babu (1980) is used if x is 
greater than or equal to 4. Note that for p and q both greater than 1, calling 
RANDOM to generate random numbers from a beta distribution a loop getting 
less than four variates on each call yields the same set of deviates as executing 
one call and getting all the deviates at once.

The values returned are less than 1.0 and greater than ε, where ε is the smallest 
positive number such that 1.0 – ε is less than 1.0.

Multivariate Normal Distribution

Calling RANDOM with keywords Mvar_Normal and Covariances generates 
pseudorandom numbers from a multivariate normal distribution with mean vec-
tor consisting of all zeros and variance-covariance matrix defined using 
keyword Covariances. First, the Cholesky factor of the variance-covariance 

f x( )
Γ p q+( )
Γ p( )Γ q( )
---------------------xp 1– 1 x–( )q 1–=
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matrix is computed. Then, independent random normal deviates with mean zero 
and variance 1 are generated, and the matrix containing these deviates is post-
multiplied by the Cholesky factor. Because the Cholesky factorization is 
performed in each invocation, it is best to generate as many random vectors as 
needed at once.

Deviates from a multivariate normal distribution with means other than zero can 
be generated by using RANDOM with keywords Mvar_Normal and 
Covariances, then adding the vectors of means to each row of the result.

Binomial Distribution

Calling RANDOM with keywords Binomial, Parameters= [p, n] generates 
pseudorandom numbers from a binomial distribution with parameters n and p. 
Parameters n and p must be positive, and p must less than 1. The probability 
function (where n = Binom_n and p = Binom_p) is

for x = 0, 1, 2, …, n.

The algorithm used depends on the values of n and p. If n * p < 10 or p is less 
than machine epsilon, the inverse CDF technique is used; otherwise, the BTPE 
algorithm of Kachitvichyanukul and Schmeiser (see Kachitvichyanukul 1982) is 
used. This is an acceptance /rejection method using a composition of four 
regions. (TPE=Triangle, Parallelogram, Exponential, left and right.)

Cauchy Distribution

Calling RANDOM with the keyword Cauchy generates pseudorandom numbers 
from a Cauchy distribution. The probability density function is 

where T is the median and T − S is the first quartile. This function first gener-
ates standard Cauchy random numbers (T = 0 and S = 1) using the technique 
described below, and then scales the values using T and S. 

Use of the inverse CDF technique would yield a Cauchy deviate from a uniform 
(0, 1) deviate, u, as tan [p (u − 0.5)]. Rather than evaluating a tangent directly, 
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however, RANDOM generates two uniform (−1, 1) deviates, x1 and x2. These 
values can be thought of as sine and cosine values. If 

is less than or equal to 1, then x1/x2 is delivered as the unscaled Cauchy deviate; 
otherwise, x1 and x2 are rejected and two new uniform (−1, 1) deviates are gen-
erated. This method is also equivalent to taking the ration of two independent 
normal deviates.

Chi-squared Distribution

Calling RANDOM with keywords Chi_squared and Parameters=Df generates 
pseudorandom numbers from a chi-squared distribution with Df degrees of free-
dom. If Df is an even integer less than 17, the chi-squared deviate r is generated 
as 

where n = Df /2 and the ui are independent random deviates from a uniform 
(0, 1) distribution. If Df is an odd integer less than 17, the chi-squared deviate is 
generated in the same way, except the square of a normal deviate is added to 
the expression above. If Df is greater than 16 or is not an integer, and if it is not 
too large to cause overflow in the gamma random number generator, the chi-
squared deviate is generated as a special case of a gamma deviate.

Mixed Exponential Distribution

Calling RANDOM with keywords Mix_Exponential, and Parameters= [θ1, θ2] 

generates pseudorandom numbers from a mixture of two exponential distribu-
tions. The probability density function is 

for x > 0.

In the case of a convex mixture, that is, the case 0 < p < 1, the mixing parame-
ter p is interpretable as a probability; and RANDOM with probability p 
generates an exponential deviate with mean θ1, and with probability 1 − p gen-
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erates an exponential with mean θ2. When p is greater than 1, but less than 
θ1/(θ1 − θ2), then either an exponential deviate with mean θ1 or the sum of two 
exponentials with means θ1 and θ2 is generated. The probabilities are 
q = p − (p − 1) (θ1/θ2) and 1 − q, respectively, for the single exponential and 
the sum of the two exponentials.

Geometric Distribution

Calling RANDOM with keywords Geometric and Parameters=P generates 
pseudorandom numbers from a geometric distribution. The parameter P is the 
probability of getting a success on any trial. A geometric deviate can be inter-
preted as the number of trials until the first success (including the trial in which 
the first success is obtained). The probability function is

f(x) = P(1 − P)x–1

for x = 1, 2, … and 0 < P < 1.

The geometric distribution as defined above has mean 1/P.

The i-th geometric deviate is generated as the smallest integer not less than 
(log (Ui))/(log (1 − P)), where the Ui are independent uniform(0, 1) random 
numbers (see Knuth 1981).

The geometric distribution is often defined on 0, 1, 2, ..., with mean (1 − P)/P. 
Such deviates can be obtained by subtracting 1 from each element of the 
returned vector of random deviates.

Hypergeometric Distribution

Calling RANDOM with keywords Hypergeometric, and Parameter=[M, N, L,] 
generates pseudorandom numbers from a hypergeometric distribution with 
parameters N, M, and L. The hypergeometric random variable X can be thought 
of as the number of items of a given type in a random sample of size N that is 
drawn without replacement from a population of size L containing M items of 
this type. The probability function is

for x = max (0, N − L + M), 1, 2, …, min (N, M)

If the hypergeometric probability function with parameters N, M, and L evalu-
ated at N − L + M (or at 0 if this is negative) is greater than the machine, and 
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less than 1.0 minus the machine epsilon, then RANDOM uses the inverse CDF 
technique. The routine recursively computes the hypergeometric probabilities, 
starting at x = max (0, N − L + M) and using the ratio

(see Fishman 1978, p. 475).

If the hypergeometric probability function is too small or too close to 1.0, then 
RANDOM generates integer deviates uniformly in the interval [1, L − i] for 
i = 0, 1, ..., and at the i-th step, if the generated deviate is less than or equal to 
the number of special items remaining in the lot, the occurrence of one special 
item is tallied and the number of remaining special items is decreased by one. 
This process continues until the sample size of the number of special items in 
the lot is reached, whichever comes first. This method can be much slower than 
the inverse CDF technique. The timing depends on N. If N is more than half of 
L (which in practical examples is rarely the case), the user may wish to modify 
the problem, replacing N by L − N, and to consider the generated deviates to be 
the number of special items not included in the sample.

Logarithmic Distribution

Calling RANDOM with keywords Logarithmic and Parameter=a generates 
pseudorandom numbers from a logarithmic distribution. The probability func-
tion is 

for x = 1, 2, 3, ..., and 0 < a < 1

The methods used are described by Kemp (1981) and depend on the value of a. 
If a is less than 0.95, Kemp’s algorithm LS, which is a “chop-down” variant of 
an inverse CDF technique, is used. Otherwise, Kemp’s algorithm LK, which 
gives special treatment to the highly probable values of 1 and 2 is used.

Lognormal Distribution

Calling RANDOM with keywords Lognormal, and Parameter=[µ, σ] generates 
pseudorandom numbers from a lognormal distribution. The scale parameter σ in 
the underlying normal distribution must be positive. The method is to generate 
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normal deviates with mean µ and standard deviation Σ and then to exponentiate 
the normal deviates.

The probability density function for the lognormal distribution is

for x > 0. The mean and variance of the lognormal distribution are 
exp (µ + σ2/2) and exp (2µ + 2σ2) − exp (2µ + σ2), respectively.

Negative Binomial

Calling RANDOM with keywords Neg_binomial and Parameters=[r, p] gener-
ates pseudorandom numbers from a negative binomial distribution. The 
parameters r and p must be positive and p must be less than 1. The probability 
function is

for x = 0, 1, 2, ...

If r is an integer, the distribution is often called the Pascal distribution and can 
be thought of as modeling the length of a sequence of Bernoulli trials until r 
successes are obtained, where p is the probability of getting a success on any 
trial. In this form, the random variable takes values r, r + 1, r + 2, … and can 
be obtained from the negative binomial random variable defined above by add-
ing r to the negative binomial variable defined by adding r to the negative 
binomial variable. This latter form is also equivalent to the sum of r geometric 
random variables defined as taking values 1, 2, 3, ...

If rp/(1 − p) is less than 100 and (1 − p)r is greater than the machine epsilon, 
RANDOM uses the inverse CDF technique; otherwise, for each negative bino-
mial deviate, RANDOM generates a gamma (r, p/(1 − p)) deviate Y and then 
generates a Poisson deviate with parameter Y.

Discrete Uniform Distribution

Calling RANDOM with keywords Discrete_unif and Parameters=k generates 
pseudorandom numbers from a uniform discrete distribution over the integers 1, 
2, ..., k. A random integer is generated by multiplying k by a uniform (0, 1) ran-
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dom number, adding 1.0, and truncating the result to an integer. This, of course, 
is equivalent to sampling with replacement from a finite population of size k.

Student’s t Distribution

Calling RANDOM with keywords Students_t and Parameters=Df generates 
pseudorandom numbers from a Student’s t distribution with Df degrees of free-
dom, using a method suggested by Kinderman et al. (1977). The method 
(“TMX” in the reference) involves a representation of the t density as the sum 
of a triangular density over (−2, 2) and the difference of this and the t density. 
The mixing probabilities depend on the degrees of freedom of the t distribu-
tion. If the triangular density is chosen, the variate is generated as the sum of 
two uniforms; otherwise, an acceptance/rejection method is used to generate the 
difference density.

Triangular Distribution 

Calling RANDOM with the keyword Triangular generates pseudorandom num-
bers from a triangular distribution over the unit interval. The probability density 
function is f (x) = 4x, for 0 ≤ x ≤ 0.5, and f (x) = 4 (1 − x), for 
0.5 < x ≤ 1. An inverse CDF technique is used.

von Mises Distribution

Calling RANDOM with keywords Von_mises and Parameters=c generates 
pseudorandom numbers from a von Mises distribution where c must be positive. 
The probability density function is 

for −π < x < π, where I0 (c) is the modified Bessel function of the first kind of 
order 0. The probability density is equal to 0 outside the interval (−π, π).

The algorithm is an acceptance/rejection method using a wrapped Cauchy distri-
bution as the majorizing distribution. It is due to Nest and Fisher (1979).

Weibull Distribution

Calling RANDOM with keywords Weibull and Parameters=[a,b] generates 
pseudorandom numbers from a Weibull distribution with shape parameter a and 
scale parameter b. The probability density function is
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for x3  0, a > 0, and b > 0. The value of b is optional; if it is not specified, it is 
set to 1.0.

Function RANDOM uses an antithetic inverse CDF technique to generate a 
Weibull variate; that is, a uniform random deviate U is generated and the 
inverse of the Weibull cumulative distribution function is evaluated at 1.0 − U 
to yield the Weibull deviate.

Note that the Rayleigh distribution with probability density function

for x ≥ 0 is the same as a Weibull distribution with shape parameter a equal to 2 
and scale parameter b equal to 

Stable Distribution

Calling RANDOM with keywords Stable and Parameters=[α, β′] generates 
pseudorandom numbers from a stable distribution with parameters α‘ and β′. α 
is the usual characteristic exponent parameter α and β′ is related to the usual 
skewness parameter β of the stable distribution. With the restrictions 0 < α ≤ 2 
and − 1 ≤ β ≤ 1, the characteristic function of the distribution is

j(t) = exp[-| t |a exp(-pib(1 - |1 - a|)sign(t)/2)] for a ¼ 1

and

j(t) = exp[-| t |(1 + 2ib ln| t |)sign(t)/p)] for a = 1

When β = 0, the distribution is symmetric. In this case, if α = 2, the distribution 
is normal with mean 0 and variance 2; and if α = 1, the distribution is Cauchy.

The parameterization using β′ and the algorithm used here are due to Chambers, 
Mallows, and Stuck (1976). The relationship between β′ and the standard β is

β′ = −tan(π(1 − α)/2) tan(−πβ(1 − |1 − α|)/2) for α ≠ 1
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and

β′ = β for α = 1

The algorithm involves formation of the ratio of a uniform and an exponential 
random variate.

Multinomial Distribution

Calling RANDOM with keywords Multinomial, Probabilites, and Parame-
ters=ntrials generates pseudorandom numbers from a K-variate multinomial 
distribution with parameters n and p. k=N_ELEMENTS(Probabilities) and 
ntrials must be positive. Each element of Probabilites must be positive and the 
elements must sum to 1. The probability function 
(with n = n, k = k, and pi = Probabilities(i)) is

for xi ≥ 0 and

The deviate in each row of r is produced by generation of the binomial deviate 
x0 with parameters n and pi and then by successive generations of the condi-
tional binomial deviates xj given x0, x1, …, xj-2 with parameters 
n − x0 − x1 − … − xj-2 and pj /(1 − p0 − p1 − … − pj-2).

Random Points on a K-dimensional Sphere

Calling RANDOM with the keywords Sphere and Parameters= k generates 
pseudorandom coordinates of points that lie on a unit circle or a unit sphere in 
K-dimensional space. For points on a circle (k = 2), pairs of uniform (− 1, 1) 
points are generated and accepted only if they fall within the unit circle (the 
sum of their squares is less than 1), in which case they are scaled so as to lie on 
the circle.

For spheres in three or four dimensions, the algorithms of Marsaglia (1972) are 
used. For three dimensions, two independent uniform (− 1, 1) deviates U1 and 
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U2 are generated and accepted only if the sum of their squares S1 is less than 1. 
Then, the coordinates

are formed. For four dimensions, U1, U2, and S1 are produced as described 
above. Similarly, U3, U4, and S2 are formed. The coordinates are then

and

For spheres in higher dimensions, K independent normal deviates are generated 
and scaled so as to lie on the unit sphere in the manner suggested by Muller 
(1959).

Random Permutation

Calling RANDOM with the keyword Permutation generates a pseudorandom 
permutation of the integers from 1 to n. It begins by filling a vector of length n 
with the consecutive integers 1 to n. Then, with M initially equal to n, a random 
index J between 1 and M (inclusive) is generated. The element of the vector 
with the index M and the element with index J swap places in the vector. M is 
then decremented by 1 and the process repeated until M = 1.

Sample Indices

Calling RANDOM with the keywords Sample_indices and Parameters=npop 
generates the indices of a pseudorandom sample,without replacement, of size n 
numbers from a population of size npop. If n is greater than npop/2, the integers 
from 1 to npop are selected sequentially with a probability conditional on the 
number selected and the number remaining to be considered. If, when the i-th 
population index is considered, j items have been included in the sample, then 
the index i is included with probability (n − j)/(npop + 1 − i).

If n is not greater than npop/2, a O(n) algorithm due to Ahrens and Dieter 
(1985) is used. Of the methods discussed by Ahrens and Dieter, the one called 
SG* is used. It involves a preliminary selection of q indices using a geometric 
distribution for the distances between each index and the next one. If the pre-

Z U S Z U S Z S1 1 1 2 2 1 3 12 1 2 1 1 2= − = − = −, , and 

Z U Z U Z U S S1 1 2 2 3 3 1 21= = = −, , /� �

Z U S S4 4 1 21= −� � /
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liminary sample size q is less than n, a new preliminary sample is chosen, and 
this is continued until a preliminary sample greater in size than n is chosen. 
This preliminary sample is then thinned using the same kind of sampling as 
described above for the case in which the sample size is greater than half of the 
population size. This routine does not store the preliminary sample indices, but 
rather restores the state of the generator used in selecting the sample initially, 
and then passes through once again, making the final selection as the prelimi-
nary sample indices are being generated.

Example 1

In this example, RANDOM is used to generate five pseudorandom, uniform 
numbers. Since RANDOMOPT is not called, the generator used is a simple 
multiplicative congruential one with a multiplier of 16807.

RANDOMOPT, Set = 123457

; Set the random seed.

r  = RANDOM(5) 

; Call RANDOM to compute the random numbers.

PM, r

; Output the results.

0.966220

0.260711

0.766262

0.569337

0.844829 

Example 2: Poisson Distribution

In this example, random numbers from a Poisson distribution are computed.

RANDOMOPT, Set = 123457

r = RANDOM(5, /Poisson, Parameters = 0.5)

; Call RANDOM with keywords Poisson and Theta.

PM, r

 2

 0

 1

 0

 1
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Example 3: Beta Distribution

In this example, random numbers are computed from a Beta distribution.

RANDOMOPT, set = 123457

r = RANDOM(5, /Beta, Parameter = [3,2])

; Call RANDOM with keywords Beta, Pin, and Qin.

PM, r

 0.281392

 0.948276

 0.398391

 0.310306

 0.829578

Example 4: Scaling the Results of RANDOM

This example computes deviates with uniform density over the interval (10, 20) 
and deviates from the normal distribution with a mean of 10 and a standard 
deviation of 2.

RANDOMOPT, Set = 123457

; Set the random number seed.

a = 10

; Define the lowerbound.

b = 20

; Define the upperbound.

r  = a + (b - a) * RANDOM(5)

; Call RANDOM to compute the deviates on (0,1) and scale the
; results to (a,b).

PM, r

; Output the results.

19.6622

12.6071

17.6626

15.6934

18.4483

stdev = 2

; Define a standard deviation.

mean =  10

; Define a mean.

r = RANDOM(6, /Normal) * stdev + mean
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; Call RANDOM to compute the deviates normal deviates and scale
; the results using the specified mean and standard deviation.

PM, r

; Output the results.

6.59363

14.4635

10.5137

12.5223

9.39352

5.71021

Example 5: Multivariate Normal Distribution

In this example, RANDOM generates five pseudorandom normal vectors of 
length 2 with variance covariance matrix equal to the following:

RANDOMOPT, Set = 123457

; Set the random number seed.

RM, cov, 2, 2

; Read the covariance matrix.

row 0: .5   .375

row 1: .375 .5

PM, RANDOM(5, /Mvar_Normal, Covariances = cov)

1.45068      1.24634

0.765975  -0.0429410

0.0583781 -0.669214

0.903489     0.462826

 -0.866886    -0.933426

FAURE_INIT Function
Initializes the structure used for computing a shuffled Faure sequence.

Usage

result = FAURE_INIT(ndim)

0.500 0.375

0.375 0.500
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Input Parameters

ndim  The dimension of the hyper-rectangle.

Returned Value

A structure that contains information about the sequence.

Input Keywords

Base  The base of the Faure sequence. 
Default: The smallest prime greater than or equal to ndim.

Skip  The number of points to be skipped at the beginning of the Faure 
sequence. Default: 

where

and B is the largest representable integer.

Discussion

Discrepancy measures the deviation from uniformity of a point set.

The discrepancy of the point set

is 

where the supremum is over all subsets of [0, 1]d of the form
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base

−  

log  /logB basem =   

[ ]1,..., 0,1 , 1,
d

nx x d∈ ≥

Dn
d A E n

n
E

E

� � � � � �= -sup
;

,l

) )
1

0, 0 0 1, 1 ,... , ,
d jE t t t j d≤ ≤ ≤ ≤= × × 



526  Chapter 10: Basic Statistics and Random PV-WAVE:IMSL Mathematics Reference

λ is the Lebesque measure, and

is the number of the xj contained in E.

The sequence x1, x2, … of points [0,1]d is a low-discrepancy sequence if there 
exists a constant c(d), depending only on d, such that 

for all n>1.

Generalized Faure sequences can be defined for any prime base b≥d. The low-
est bound for the discrepancy is obtained for the smallest prime b≥d, so the 
keyword Base defaults to the smallest prime greater than or equal to the 
dimension.

The generalized Faure sequence x1, x2, …, is computed as follows:

Write the positive integer n in its b-ary expansion,

where ai (n) are integers,

The j-th coordinate of xn is

The generator matrix for the series,

( );E n

Dn
d

c d
n d

n
� � � � � �

�
log

n a n bi
i

i

=

=

�

Ê ( )
0

0 � <a n bi � �

x c a n b j dn
j

kd
j

dk
d

k( ) ( ) ( ) ,= � �

=

�

=

�

- -ÊÊ
00

1 1

ck d
j( )



FAURE_INIT Function  527

is defined to be

and

is an element of the Pascal matrix,

It is faster to compute a shuffled Faure sequence than to compute the Faure 
sequence itself. It can be shown that this shuffling preserves the low-discrep-
ancy property.

The shuffling used is the b-ary Gray code. The function G(n) maps the positive 
integer n into the integer given by its b-ary expansion.

The sequence computed by this function is x(G(n)), where x is the generalized 
Faure sequence.

Example

In this example, five points in the Faure sequence are computed. The points are 
in the three-dimensional unit cube.

Note that FAURE_INIT is used to create a structure that holds the state of the 
sequence. Each call to FAURE_NEXT_PT returns the next point in the 
sequence and updates the state structure.

state = FAURE_INIT(3)

p = FAURE_NEXT_PT(5, state)

PM, p

     0.333689     0.492659    0.0640654

     0.667022     0.825992     0.397399

     0.778133     0.270436     0.175177

     0.111467     0.603770     0.508510

( )j d kc j c
k d k d

−=

k dc

c
d

c d c
k d

k d
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     0.444800     0.937103     0.841843

FAURE_NEXT_PT Function
Computes a shuffled Faure sequence.

Usage

result = FAURE_NEXT_PT(npts, state)

Input Parameters

npts  The number of points to generate in the hyper-rectangle.

state  State structure created by a call to FAURE_INIT.

Returned Value

An array of size npts by state.dim containing the npts next points in the shuffled 
Faure sequence.

Input Keywords

Double  If present and nonzero, double precision is used.

Output Keywords

Skip  The current point in the sequence. The sequence can be restarted by 
initializing a new sequence using this value for Skip, and using the same dimen-
sion for ndim.

Discussion

Discrepancy measures the deviation from uniformity of a point set.
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The discrepancy of the point set

is  

where the supremum is over all subsets of [0, 1]d of the form

λ is the Lebesque measure, and

is the number of the xj contained in E. 

The sequence x1, x2, … of points [0,1]d is a low-discrepancy sequence if there 
exists a constant c(d), depending only on d, such that 

for all n>1.

Generalized Faure sequences can be defined for any prime base b≥d. The low-
est bound for the discrepancy is obtained for the smallest prime b≥d, so the 
keyword Base defaults to the smallest prime greater than or equal to the 
dimension.

The generalized Faure sequence x1, x2, …, is computed as follows:

Write the positive integer n in its b-ary expansion
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where ai(n) are integers,

The j-th coordinate of xn is

The generator matrix for the series,

is defined to be

and

is an element of the Pascal matrix,

It is faster to compute a shuffled Faure sequence than to compute the Faure 
sequence itself. It can be shown that this shuffling preserves the low-discrep-
ancy property.

The shuffling used is the b-ary Gray code. The function G(n) maps the positive 
integer n into the integer given by its b-ary expansion.

The sequence computed by this function is x(G(n)), where x is the generalized 
Faure sequence.
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Example

In this example, five points in the Faure sequence are computed. The points are 
in the three-dimensional unit cube.

Note that FAURE_INIT is used to create a structure that holds the state of the 
sequence. Each call to FAURE_NEXT_PT returns the next point in the 
sequence and updates the state structure. 

state = FAURE_INIT(3)

p = FAURE_NEXT_PT(5, state)

PM, p

     0.333689     0.492659    0.0640654

     0.667022     0.825992     0.397399

     0.778133     0.270436     0.175177

     0.111467     0.603770     0.508510

     0.444800     0.937103     0.841843
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NORMALCDF Function 
Evaluates the standard normal (Gaussian) distribution function. Using a key-
word, the inverse of the standard normal (Gaussian) distribution can be 
evaluated.

Usage

result = NORMALCDF(x)

Input Parameters 

x — Expression for which the normal distribution function is to be evaluated.

Returned Value 

result — The probability that a normal random variable takes a value less than 
or equal to x.

Input Keywords

Double — If present and nonzero, double precision is used.

Inverse — If present and nonzero, evaluates the inverse of the standard normal 
(Gaussian) distribution function. If Inverse is specified, then argument x repre-
sents the probability for which the inverse of the normal distribution function is 
to be evaluated. In this case, x must be in the open interval (0.0, 1.0).

Discussion 

Function NORMALCDF evaluates the distribution function, Φ, of a standard 
normal (Gaussian) random variable; that is, 

The value of the distribution function at the point x is the probability that the 
random variable takes a value less than or equal to x.

The standard normal distribution (for which NORMALCDF is the distribution 
function) has mean of zero and variance of 1. The probability that a normal ran-

Φ x( )
1

2π
---------- e t– 2 2⁄ td

∞–

x

∫=
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dom variable with mean µ and variance σ2 is less than y is given by 
NORMALCDF evaluated at (y – µ) / σ.

The function Φ(x) is evaluated by use of the complementary error function, 
ERFC (page 358). The relationship follows below.

 

If the keyword Inverse is specified, the NORMALCDF function evaluates the 
inverse of the distribution function, Φ, of a standard normal (Gaussian) random 
variable; that is,

NORMALCDF (x, /Inverse ) = Φ–1 (x) where 

The value of the distribution function at the point x is the probability that the 
random variable takes a value less than or equal to x. The standard normal dis-
tribution has a mean of zero and a variance of 1.

The NORMALCDF function is evaluated by use of minimax rational-function 
approximations for the inverse of the error function. General descriptions of 
these approximations are given in Hart et al. (1968) and Strecok (1968). The 
rational functions used in NORMALCDF are described by Kinnucan and Kuki 
(1968).

Example 

Suppose X is a normal random variable with mean 100 and variance 225. This 
example finds the probability that X is less than 90 and the probability that X is 
between 105 and 110.

x1 = (90-100)/15.

p = NORMALCDF(x1)

PM, p, Title = $

’The probability that X is less than 90 is:’

The probability that X is less than 90 

is: 0.252493

x1 = (105 - 100)/15.

x2 = (110 - 100)/15.

p = NORMALCDF(x2) - NORMALCDF(x1)

PM, p, Title = $

Φ x( ) ERFC x 2.0⁄–( ) 2.⁄( )=

Φ x( )
1

2π
---------- e

t
2 2⁄–

td
∞–

x

∫=
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’The probability that X is between 105 and ’, $

’110 is:’

The probability that X is between 105 and 110

is: 0.116949

BINORMALCDF Function 
Evaluates the bivariate normal distribution function.

Usage

result = BINORMALCDF(x, y, rho)

Input Parameters

x — The x-coordinate of the point for which the bivariate normal distribution 
function is to be evaluated.

y — The y-coordinate of the point for which the bivariate normal distribution 
function is to be evaluated.

rho — Correlation coefficient.

Returned Value

result — The probability that a bivariate normal random variable with correla-
tion rho takes a value less than or equal to x and less than or equal to y.

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

Function BINORMALCDF evaluates the distribution function F of a bivariate 
normal distribution with means of zero, variances of 1, and correlation of rho; 
that is, ρ = rho and |ρ| < 1.

F x y,( ) 1

2π 1 ρ2–
------------------------- exp

u2 2ρuv– v2+
2 1 ρ2–( )

-----------------------------------– 
  u vdd

∞–

y

∫∞–

x

∫=
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To determine the probability that U ≤ u0 and V ≤ v0, where (U, V) is a bivariate 
normal random variable with mean µ = (µU, µV) and the following variance-
covariance matrix:

transform (U, V)T to a vector with zero means and unit variances. The input to 
BINORMALCDF would be as follows:

, , and 

The BINORMALCDF function uses the method of Owen (1962, 1965). For 
|ρ| = 1, the distribution function is computed based on the univariate statistic Z 
= min(x, y) and on the normal distribution NORMALCDF.

Example

Suppose (x, y) is a bivariate normal random variable with mean (0, 0) and the 
following variance-covariance matrix: 

This example finds the probability that x is less than –2.0 and y is less than 0.0.

x = -2 

y = 0

rho = .9

; Define x, y, and rho.

p = BINORMALCDF(x, y, rho)

; Call BINORMALCDF and output the results.

PM, ’P((x < -2.0) and (y < 0.0)) = ’, p, $

Format = ’(a29, f8.4)’

P((x < -2.0) and (y < 0.0)) = 0.0228

∑ σU
2 σUV

σUV σV
2

=

X
u0 µU–( )

σU

----------------------= Y
v0 µV–( )

σV

---------------------= ρ
σUV

σUσV( )
-----------------=

1.0 0.9

0.9 1.0
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CHISQCDF Function 
Evaluates the chi-squared distribution or noncentral chi-squared distribution. 
Using a keyword the inverse of these distributions can be computed.

Usage

result = CHISQCDF(chisq, df [, delta])

Input Parameters

chisq — Expression for which the chi-squared distribution function is to be 
evaluated.

df — Number of degrees of freedom of the chi-squared distribution. Argument 
df must be greater than or equal to 0.5.

delta — (Optional) The noncentrality parameter.  delta must be nonnegative, 
and delta + df must be less than or equal to 200,000.

Returned Value

result — The probability that a chi-squared random variable takes a value less 
than or equal to chisq.

Input Keywords

Double — If present and nonzero, double precision is used.

Inverse — If present and nonzero, evaluates the inverse of the chi-squared dis-
tribution function. If inverse is specified, then argument chisq represents the 
probability for which the inverse of the chi-squared distribution function is to be 
evaluated. Argument chisq must be in the open interval (0.0, 1.0).
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Discussion 

If Two Input Arguments Are Used 

Function CHISQCDF evaluates the distribution function, F, of a chi-squared 
random variable with ν = df. Then, 

where Γ(·) is the gamma function. The value of the distribution function at the 
point x is the probability that the random variable takes a value less than or 
equal to x.

For ν > 65, CHISQCDF uses the Wilson-Hilferty approximation (Abramowitz 
and Stegun 1964, Equation 26.4.17) to the normal distribution, and 
NORMALCDF function is used to evaluate the normal distribution function.

For ν ≤ 65, CHISQCDF uses series expansions to evaluate the distribution func-
tion. If x < max(ν / 2, 26), CHISQCDF uses the series 6.5.29 in Abramowitz 
and Stegun (1964); otherwise, it uses the asymptotic expansion 6.5.32 in 
Abramowitz and Stegun.

If Inverse is specified, the CHISQCDF function evaluates the inverse distribu-
tion function of a chi-squared random variable with ν = df and with probability 
p. That is, it determines x, such that 

where Γ(·) is the gamma function. The probability that the random variable 
takes a value less than or equal to x is p.

For ν < 40, CHISQCDF uses bisection (if ν ≤ 2 or p > 0.98) or regula falsi to 
find the expression for which the chi-squared distribution function is equal to p. 

For 40 ≤ ν < 100, a modified Wilson-Hilferty approximation (Abramowitz and 
Stegun 1964, Equation 26.4.18) to the normal distribution is used. The NOR-
MALCDF function is used to evaluate the inverse of the normal distribution 
function. For ν ≥ 100, the ordinary Wilson-Hilferty approximation (Abramow-
itz and Stegun 1964, Equation 26.4.17) is used. 

F x( ) 1

2ν 2⁄ Γ ν 2⁄( )
--------------------------- e t 2⁄– tν 2⁄ 1– dt

0

x

∫=

p
1

2ν 2⁄ Γ ν 2⁄( )
--------------------------- e t 2⁄– tν 2⁄ 1– dt

0

x

∫=
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If Three Input Arguments Are Used 

Function CHISQCDF evaluates the distribution function of a noncentral chi-
squared random variable with df degrees of freedom and noncentrality parame-
ter alam, that is, with v = df, λ = alam, and x = chi_squared,

where Γ(⋅) is the gamma function. This is a series of central chi-squared distri-
bution functions with Poisson weights. The value of the distribution function at 
the point x is the probability that the random variable takes a value less than or 
equal to x. 

The noncentral chi-squared random variable can be defined by the distribution 
function above, or alternatively and equivalently, as the sum of squares of inde-
pendent normal random variables. If Yi have independent normal distributions 
with means µi and variances equal to one and

then X has a noncentral chi-squared distribution with n degrees of freedom and 
noncentrality parameter equal to

With a noncentrality parameter of zero, the noncentral chi-squared distribution 
is the same as the chi-squared distribution. 

Function CHISQCDF determines the point at which the Poisson weight is great-
est, and then sums forward and backward from that point, terminating when the 
additional terms are sufficiently small or when a maximum of 1000 terms have 
been accumulated. The recurrence relation 26.4.8 of Abramowitz and Stegun 
(1964) is used to speed the evaluation of the central chi-squared distribution 
functions.

If Inverse is specified, CHISQCDF evaluates the inverse distribution function of 
a noncentral chi-squared random variable with df degrees of freedom and non-
centrality parameter delta; that is, with P = p, v = df, and λ = delta, it 
determines c0 (= CHISQCDF(p, df, delta)), such that
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where Γ(⋅) is the gamma function. The probability that the random variable 
takes a value less than or equal to c0 is P.

Example

Suppose X is a chi-squared random variable with two degrees of freedom. This 
example finds the probability that X is less than 0.15 and the probability that X 
is greater than 3.0.

df = 2

chisq = .15

p = CHISQCDF(chisq, df)

PM, p, Title = $

’The probability that chi-squared ’ + $

’with 2 df is less than .15 is:’ 

The probability that chi-squared with 2 df is 

less than .15 is: 0.0722565

df = 2

chisq = 3

p = 1 - CHISQCDF(chisq, df)

PM, p, Title = $

’The probability that chi-squared ’ + $

’with 2 df is greater than 3 is:’

The probability that chi-squared with 2 df 

is greater than 3 is: 0.223130

Informational Errors

STAT_ARG_LESS_THAN_ZERO — Input parameter, chisq, is less than zero.

STAT_UNABLE_TO_BRACKET_VALUE — Bounds that enclose p could not be 
found. An approximation for CHISQCDF is returned.

STAT_CHI_2_INV_CDF_CONVERGENCE — Value of the inverse chi-squared 
could not be found within a specified number of iterations. An approximation 
for CHISQCDF is returned.
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Alert Errors

STAT_NORMAL_UNDERFLOW — Using the normal distribution for large 
degrees of freedom, underflow would have occurred.

FCDF Function 
Evaluates the F distribution function. Using a keyword, the inverse of the F dis-
tribution function can be evaluated.

Usage

result = FCDF(f, dfnum, dfden)

Input Parameters

f — Expression for which the F distribution function is to be evaluated.

dfnum — Numerator degrees of freedom. Argument dfnum must be positive.

dfden — Denominator degrees of freedom. Argument dfden must be positive.

Returned Value

result — The probability that an F random variable takes a value less than or 
equal to the input point f.

Input Keywords

Double — If present and nonzero, double precision is used.

Inverse — If present and nonzero, evaluates the inverse of the F distribution 
function. If inverse is specified, argument f represents the probability for which 
the inverse of the F distribution function is to be evaluated. In this case, f must 
be in the open interval (0.0, 1.0).

Discussion

Function FCDF evaluates the distribution function of a Snedecor’s F random 
variable with dfnum and dfden. The function is evaluated by making a transfor-
mation to a beta random variable and then evaluating the incomplete beta 
function. If X is an F variate with ν1 and ν2 degrees of freedom and 
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Y = (ν1X) / (ν2 + ν1X), then Y is a beta variate with parameters p = ν1 / 2 and 
q = ν2 / 2. The FCDF function also uses a relationship between F random vari-
ables that can be expressed as follows:
FF(f, ν1, ν2) = 1 – FF(1 / f, ν2, ν1), where FF is the distribution function for an 
F random variable.

If the keyword Inverse is specified, the FCDF function evaluates the inverse 
distribution function of a Snedecor’s F random variable with ν1 = dfnum 
numerator degrees of freedom and ν2 = dfden  denominator degrees of free-
dom. The function is evaluated by making a transformation to a beta random 
variable and then evaluating the inverse of an incomplete beta function. 

Example

This example finds the probability that an F random variable with one numera-
tor and one denominator degree of freedom is greater than 648.

f = 648

p = 1 - FCDF(f, 1, 1)

PM, p, Title = $

’The probability that an F(1,1) ’ + $

’variate is greater than 648 is:’

The probability that an F(1,1) variate is greater than 648 is: 
0.0249959

Fatal Errors

STAT_F_INVERSE_OVERFLOW — Function FCDF is set to machine infinity 
since overflow would occur upon modifying the inverse value for the F distri-
bution with the result obtained from the inverse beta distribution.
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TCDF Function 
Evaluates the Student’s t distribution or noncentral Student’s t distribution. 
Using a keyword the inverse of these distributions can be computed.

Usage

result = TCDF(chisq, df [, delta])

Input Parameters

t — Argument for which the Student’s t distribution function is to be evaluated.

df — Degrees of freedom. Argument df must be greater than or equal to 1.0.

delta — (Optional) The noncentrality parameter.

Returned Value

result — The probability that a Student’s t random variable takes a value less 
than or equal to the input t.

Input Keywords

Double — If present and nonzero, double precision is used.

Inverse — If present and nonzero, evaluates the inverse of the Student’s t distri-
bution function. If Inverse is specified, argument t represents the probability for 
which the inverse of the Student’s t distribution function is to be evaluated. In 
this case, t must be in the open interval (0.0, 1.0).

Discussion

If Two Input Arguments Are Used

Function TCDF evaluates the distribution function of a Student’s t random vari-
able with ν = df degrees of freedom. If t2 ≥ ν, the relationship of a t to an F 
random variable (and subsequently, to a beta random variable) is exploited, and 
percentage points from a beta distribution are used. Otherwise, the method 
described by Hill (1970) is used. If ν is not an integer or if ν is greater than 19, 
a Cornish-Fisher expansion is used to evaluate the distribution function. If ν is 
less than 20 and |t| is less than 2.0, a trigonometric series (see Abramowitz and 
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Stegun 1964, Equations 26.7.3 and 26.7.4, with some rearrangement) is used. 
For the remaining cases, a series given by Hill (1970) that converges well for 
large values of t is used.

If keyword Inverse is specified, the TCDF function evaluates the inverse distri-
bution function of a Student’s t random variable with ν = df degrees of freedom. 
If ν equals 1 or 2, the inverse can be obtained in closed form. If ν is between 1 
and 2, the relationship of a t to a beta random variable is exploited, and the 
inverse of the beta distribution is used to evaluate the inverse. Otherwise, the 
algorithm of Hill (1970) is used. For small values of ν greater than 2, Hill’s 
algorithm inverts an integrated expansion in 1 / (1 + t2 / ν) of the t density. For 
larger values, an asymptotic inverse Cornish-Fisher type expansion about nor-
mal deviates is used.

If Three Input Arguments Are Used 

Function TCDF evaluates the distribution function F of a noncentral t random 
variable with df degrees of freedom and noncentrality parameter delta; that 
is, with v = df, δ = delta , and t0 = t,

where Γ(⋅) is the gamma function. The value of the distribution function at the 
point t0 is the probability that the random variable takes a value less than or 
equal to t0.

The noncentral t random variable can be defined by the distribution function 
above, or alternatively and equivalently, as the ratio of a normal random vari-
able and an independent chi-squared random variable. If w has a normal 
distribution with mean δ and variance equal to one, u has an independent chi-
squared distribution with v degrees of freedom, and

then x has a noncentral t distribution with degrees of freedom and noncentrality 
parameter δ.

The distribution function of the noncentral t can also be expressed as a double 
integral involving a normal density function (see, for example, Owen 1962, 
page 108). The function TNDF uses the method of Owen (1962, 1965), which 
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uses repeated integration by parts on that alternate expression for the distribu-
tion function.

If Inverse is specified TCDF evaluates the inverse distribution function of a 
noncentral t random variable with df degrees of freedom and noncentrality 
parameter delta; that is, with P = p, v = df, and δ = delta, it determines 
t0 (= TCDF(p, df, delta )), such that

where Γ(⋅) is the gamma function. The probability that the random variable 
takes a value less than or equal to t0 is P.

Example

This example finds the probability that a t random variable with six degrees of 
freedom is greater in absolute value than 2.447. Argument t is symmetric about 
zero.

p = 2 * TCDF(-2.447, 6)

PM, ’Pr(|t(6)| > 2.447) = ’, p, $

Format = ’(a21, f7.4)’

Pr(|t(6)| > 2.447) =  0.0500

Informational Errors

STAT_OVERFLOW — Function TCDF is set to machine infinity since overflow 
would occur upon modifying the inverse value for the F distribution with the 
result obtained from the inverse beta distribution.
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GAMMACDF Function 
Evaluates the gamma distribution function.

Usage

result = GAMMACDF(x, a)

Input Parameters 

x — Argument for which the gamma distribution function is to be evaluated.

a — Shape parameter of the gamma distribution. This parameter must be 
positive.

Returned Value

result — The probability that a gamma random variable takes a value less than 
or equal to x.

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

Function GAMMACDF evaluates the distribution function, F, of a gamma ran-
dom variable with shape parameter a; that is,

where Γ(·) is the gamma function. (The gamma function is the integral from 0 
to infinity of the same integrand as above.) The value of the distribution func-
tion at the point x is the probability that the random variable takes a value less 
than or equal to x.

The gamma distribution is often defined as a two-parameter distribution with a 
scale parameter b (which must be positive) or even as a three-parameter distri-

F x( )
1

Γ a( )
---------- e

t–
t

a 1–
td

0

x

∫=
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bution in which the third parameter c is a location parameter. In the most 
general case, the probability density function over (c, infinity) is as follows:

If T is such a random variable with parameters a, b, and c, the probability that 
T ≤ t0 can be obtained from GAMMACDF by setting x = (t0 – c ) / b.

If x is less than a or if x is less than or equal to 1.0, GAMMACDF uses a series 
expansion; otherwise, a continued fraction expansion is used. (See Abramowitz 
and Stegun, 1964.)

Example

Let X be a gamma random variable with a shape parameter of 4. (In this case, it 
has an Erlang distribution, since the shape parameter is an integer.) This exam-
ple finds the probability that X is less than 0.5 and the probability that X is 
between 0.5 and 1.0.

a = 4

x = .5

p = GAMMACDF(x, a)

PM, p, Title = $

’The probability that X is less ’ + $

’than .5 is:’

The probability that X is less than .5 is: 

0.00175162

x = 1

p = GAMMACDF(x, a) - p

PM, p, Title = $

’The probability that X is ’ + $

’between .5 and 1 is:’

The probability that X is between .5 and 1 

is: 0.0172365

Informational Errors

STAT_LESS_THAN_ZERO — Input argument, x, is less than zero.

f t( )
1

baΓ a( )
----------------e t c–( ) b⁄– x c–( )a 1–=



BETACDF Function  549

Fatal Errors

STAT_X_AND_A_TOO_LARGE — Function overflows because x and a are too 
large.

BETACDF Function 
Evaluates the beta probability distribution function.

Usage

result = BETACDF(x, pin, qin)

Input Paramters

x — Argument for which the beta probability distribution function is to be 
evaluated.

pin — First beta distribution parameter. Argument pin must be positive.

qin — Second beta distribution parameter. Argument qin must be positive.

Returned Value

result — The probability that a beta random variable takes on a value less than 
or equal to x.

Input Keywords

Double — If present and nonzero, double precision is used.

Inverse — If present and nonzero, evaluates the inverse of the Beta distribution 
function. If Inverse is specified, argument x represents the probability for which 
the inverse of the Beta distribution function is to be evaluated. In this case, x 
must be in the open interval (0.0, 1.0).

Discussion

Function BETACDF evaluates the distribution function of a beta random vari-
able with parameters pin and qin. This function is sometimes called the 
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incomplete beta ratio and is denoted by Ix(p, q), where p = pin and q = qin. It is 
given by

where Γ(·) is the gamma function. The value of the distribution function by 
Ix(p, q) is the probability that the random variable takes a value less than or 
equal to x.

The integral in the expression above is called the incomplete beta function and 
is denoted by βx(p, q). The constant in the expression is the reciprocal of the 
beta function (the incomplete function evaluated at 1) and is denoted by 
βx(p, q).

If the keyword Inverse is specified, the BETACDF function evaluates the 
inverse distribution function of a beta random variable with parameters pin and 
qin. With P = x, p = pin and q = qin, it returns x such that

where Γ(·) is the gamma function. The probability that the random variable 
takes a value less than or equal to x is P.

The BETCDF function uses the method of Bosten and Battiste (1974).

Example

Suppose X is a beta random variable with parameters 12 and 12 (X has a sym-
metric distribution). This example finds the probability that X is less than 0.6 
and the probability that X is between 0.5 and 0.6. (Since X is a symmetric beta 
random variable, the probability that it is less than 0.5 is 0.5.)

p = BETACDF(.6, 12, 12)

; Call BETACDF to compute the first probability 
; and output the results.

PM, p, Title = $

’The probability that X is less than ’ + $

’0.6 is:’, Format= ’(f8.4)’

The probability that X is less than 0.6 is: 

0.8364

Ix p q,( ) Γ p )Γ q )((
Γ p q )+(

------------------------- t
0

x

∫
p 1–

1 t )–( q 1–
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Γ p )Γ q )((
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0

x

∫
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p = p - BETACDF(.5, 12, 12)

; Call BETACDF and use the previously computed 
; probability to determine the next probability.

PM, p, Format = ’(f8.4)’, $

title = ’The  probability that X ’ + $

’is between 0.5 and 0.6 is:’

The probability that X is between 0.5 and 0.6 

is: 0.3364

BINOMIALCDF Function 
Evaluates the binomial distribution function.

Usage

result = BINOMIALCDF(k, n, p)

Input Parameters

k — Argument for which the binomial distribution function is to be evaluated.

n — Number of Bernoulli trials.

p — Probability of success on each trial.

Returned Value

result — The probability that k or fewer successes occur in n independent Ber-
noulli trials, each of which has a probability p of success.

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

Function BINOMIALCDF evaluates the distribution function of a binomial ran-
dom variable with parameters n and p by summing probabilities of the random 
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variable taking on the specific values in its range. These probabilities are com-
puted by the following recursive relationship:

To avoid the possibility of underflow, the probabilities are computed forward 
from 0 if k is not greater than n times p; otherwise, they are computed back-
ward from n. The smallest positive machine number, ε, is used as the starting 
value for summing the probabilities, which are rescaled by (1 – p)nε if forward 
computation is performed and by pnε if backward computation is done.

For the special case of p = 0, BINOMIALCDF is set to 1; for the case p = 1, 
BINOMIALCDF is set to 1 if k = n and is set to zero otherwise.

Example

Suppose X is a binomial random variable with n = 5 and p = 0.95. This example 
finds the probability that X is less than or equal to 3. 

p = BINOMIALCDF(3, 5, .95)

PM, ’Pr(x < 3) = ’, p, $

Format = ’(a12, f7.4)’

Pr(x < 3) =  0.0226

Informational Errors

STAT_LESS_THAN_ZERO — Input parameter, k, is less than zero.

STAT_GREATER_THAN_N — Input parameter, k, is greater than the number of 
Bernoulli trials, n.

Pr X j=( ) n 1 j–+( )p
j 1 p–( )

----------------------------Pr X j 1–=( )=
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HYPERGEOCDF Function 
Evaluates the hypergeometric distribution function.

Usage

result = HYPERGEOCDF(k, n, m, l)

Input Parameters

k — Parameter for which the hypergeometric distribution function is to be 
evaluated.

n — Sample size. Argument n must be greater than or equal to k.

m — Number of defectives in the lot.

l — Lot size. Parameter l must be greater than or equal to n and m.

Returned Value

result — The probability that k or fewer defectives occur in a sample of size n 
drawn from a lot of size l that contains m defectives.

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

Function HYPERGEOCDF evaluates the distribution function of a hypergeo-
metric random variable with parameters n, l, and m. The hypergeometric 
random variable X can be thought of as the number of items of a given type in a 
random sample of size n that is drawn without replacement from a population 
of size l containing m items of this type. 
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The probability function is 

where .

If k is greater than or equal to i and less than or equal to min(n, m), 
BINOMIALCDF sums the terms in this expression for j going from i up to k; 
otherwise, 0 or 1 is returned, as appropriate. To avoid rounding in the accumu-
lation, BINOMIALCDF performs the summation differently, depending on 
whether or not k is greater than the mode of the distribution, which is the great-
est integer in (m + 1) (n + 1) / (l + 2).

Example

Suppose X is a hypergeometric random variable with n = 100, l = 1000, and 
m = 70. In this example, the distribution function is evaluated at 7.

p = HYPERGEOCDF(7, 100, 70, 1000)

PM, ’Pr(x <= 7) = ’, p, $

Format = ’(a13,f7.4)’

Pr(x <= 7) =  0.5995

Informational Errors

STAT_LESS_THAN_ZERO — Input parameter, k, is less than zero.

STAT_K_GREATER_THAN_N — Input parameter, k, is greater than the sam-
ple size.

Fatal Errors

STAT_LOT_SIZE_TOO_SMALL — Lot size must be greater than or equal to n 
and m.
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POISSONCDF Function 
Evaluates the Poisson distribution function.

Usage

result = POISSONCDF(k, theta)

Input Parameters

k — Parameter for which the Poisson distribution function is to be evaluated.

theta — Mean of the Poisson distribution. Parameter theta must be positive.

Returned Value

result — The probability that a Poisson random variable takes a value less than 
or equal to k.

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

Function POISSONCDF evaluates the distribution function of a Poisson random 
variable with parameter theta. The mean of the Poisson random variable, theta, 
must be positive. 

The probability function (with θ = theta) is as follows:

  

The individual terms are calculated from the tails of the distribution to the mode 
of the distribution and summed. The POISSONCDF function uses the recursive 
relationship 

,      

with .

f x( ) e θ– θx( ) x!⁄= for x 0 1 2 …, , ,=

f x 1+( ) f x( ) θ x 1+( )⁄( )= for x 0 1 2 … k 1–, , , ,=

f 0( ) e
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Example

Suppose X is a Poisson random variable with θ = 10. This example evaluates 
the probability that X ≤ 7.

p = POISSONCDF(7, 10)

PM, ’Pr(x <= 7) = ’, p, $

Format = ’(a13,f7.4)’

Pr(x <= 7) =  0.2202

Informational Errors

STAT_LESS_THAN_ZERO —  Input parameter, k, is less than zero.
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DAYSTODATE Procedure 
Gives the date corresponding to the number of days since January 1, 1900.

Usage

DAYSTODATE, days, day [, month [, year]]

Input Parameters

days — Number of days since January 1, 1900.

Output Parameters

day — On return, this named variable is assigned the day of the date specified 
by days.

month — If present, on return, this named variable is assigned the month of the 
date specified by days.

year — If present, on return, this named variable is assigned the year of the 
date specified by days. The year 1950 corresponds to the year 1950 A.D., and 
the year 50 corresponds to year 50 A.D.

Discussion

Procedure DAYSTODATE computes the date corresponding to the number of 
days since January 1, 1900. For a negative input value of days, the date com-
puted is prior to January 1, 1900. This procedure is the inverse of 
PV-WAVE:IMSL Mathematics function DATETODAYS (page 559).

The beginning of the Gregorian calendar was the first day after October 4, 
1502, which became October 15, 1582. Prior to that, the Julian calendar was in 
use.

Example

The following example uses DAYSTODATE to compute the date for the 100th 
day of 1986. This is accomplished by first using function DATETODAYS 
(page 559) to get the “day number” for December 31, 1985.

d0 = DATETODAYS(31, 12, 1985)

DAYSTODATE, d0 + 100, d, m, y
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PM, d, m, y, Title = $
’Day 100 of 1986 is (day-month-year)’, $
Format = ’(20x, i3, i4, i7)’

Day 100 of 1986 is (day-month-year)

10  4 1986

DATETODAYS Function 
Computes the number of days from January 1, 1900, to the given date.

Usage

result = DATETODAYS([day [, month [, year]]])

Input Parameters

day — Day of the input date.

month — Month of the input date.

year — Year of the input date. The year 1950 corresponds to the year 1950 
A.D., and the year 50 corresponds to year 50 A.D.

Returned Value

result — Number of days from January 1, 1900, to the given date. If negative, 
it indicates the number of days prior to January 1, 1900.

Discussion

Function DATETODAYS returns the number of days from January 1, 1900, to 
the given date and returns negative values for days prior to January 1, 1900. A 
negative year can be used to specify B.C. Input dates in year 0 and for October 
5, 1582, through October 14, 1582, inclusive, do not exist; consequently, in 
these cases, DATETODAYS issues an error.

The beginning of the Gregorian calendar was the first day after October 4, 
1582, which became October 15, 1582. Prior to that, the Julian calendar was in 
use. 
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Example

The following example uses DATETODAYS to compute the number of days 
from January 15, 1986, to February 28, 1986.

d0 = DATETODAYS(15, 1, 1986)

d1 = DATETODAYS(28, 2, 1986)

PM, d1 - d0, Title = $

’Number of days from 1/15/86 to 2/28/86’

Number of days from 1/15/86 to 2/28/86

 44

CONSTANT Function 
Returns the value of various mathematical and physical constants.

Usage

result = CONSTANT(name [, units])

Input Parameters

name — Scalar string specifying the name of the desired constant. The case of 
the characters is not relevant when specifying name, i.e., character strings “PI”, 
“Pi”, “pI”, and “pi” are equivalent. Spaces and underscores are allowed and 
ignored.

units — Scalar string specifying the units of the desired constant. If empty, then 
Systeme International d’Unites (SI) units are assumed. The case of the charac-
ters is not relevant when specifying units, i.e., character strings “METER”, 
“Meter”, and “meter” are equivalent. Parameter units has the form
“U1*U2*...*Um/V1/.../Vn,” where Ui and Vi are the names of basic units or the 
names of basic units raised to a power. Basic units must be separated by * or /. 
Powers are indicated by ^, as in “m^2” for m2. Examples are “METER*KILO-
GRAM/SECOND”, “M*KG/S”, “METER”, or “M/KG^2”. 

Returned Value

result — By default, returns the desired constant. If no value can be computed, 
NaN (Not a Number) is returned.
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Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

The names allowed are listed in the following table. Values marked with (mp) 
are exact (to machine precision). The references in the right-hand column are 
indicated by code numbers: (1) for Cohen and Taylor (1986), (2) for Liepman 
(1964), and (3) for precomputed mathematical constants.

Name Description Value Reference

amu atomic mass unit 1.6605655 x 10–27 kg 1

ATM standard atm. pressure 1.01325 x 105 N/m2 (mp) 2

AU astronomical unit 1.496 x 1011 m

Avogadro Avogadro’s number, N 6.022045 x 1023 1/mole 1

Boltzman Boltzman’s constant, k 1.380662 x 10–23 J / K 1

C speed of light, c 2.997924580 x 108 m/s 1

Catalan Catalan’s constant 0.915965... (mp) 3

E base of natural logs, e 2.718... (mp) 3

ElectronCharge electron charge, e 1.6021892 x 10–19 C 1

ElectronMass electron mass,  me 9.109534 x 10–31 kg 1

ElectronVolt electron volt, ev 1.6021892 x 10–19 J 1

Euler Euler’s constant,  γ 0.577... (mp) 3

Faraday Faraday constant, F 9.648456 x 104 C/mole 1

FineStructure fine structure,  α 7.2973506 x 10–3 1

Gamma Euler’s constant,  γ  0.577... (mp) 3

Gas gas constant,  R0 8.31441 J/mole/K 1

Gravity gravitational constant, 
G

6.6720 x 10–11 N m2 / kg2 1

Hbar Planck’s constant / 2π 1.0545887 x 10–34 J s 1

PerfectGasVolume std. vol. ideal gas 2.241383 x 10–2 m3 / mole 1
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The units allowed are as follows:

Pi Pi,  π  3.141... (mp) 3

Planck Planck’s constant, h 6.626176 x 10–34 J s 1

ProtonMass proton mass,  Mp 1.6726485 x 10–27 kg 1

Rydberg Rydberg’s constant,  
Rinfinity

1.097373177 x 107 /m 1

Speedlight speed of light, c 2.997924580 x 108 m/s 1

StandardGravity standard g 9.80665 m/s2 (mp) 2

StandardPressure standard atm. pressure 1.01325 x 105 N/m2 (mp) 2

StefanBoltzman Stefan-Boltzman,  σ 5.67032 x 10–8 W/K4 /m2 1

WaterTriple triple point of water 2.7316 x 102 K 2

Unit Description

time day, hour = hr, min = minute, s = sec = second, year

frequency Hertz = Hz

mass AMU, g = gram, lb = pound, ounce = oz, slug

distance Angstrom, AU, feet = foot, in = inch, 
m = meter = metre, micron, mile, mill, parsec, yard

area acre

volume l = liter = litre

force dyne, N = Newton

energy BTU, Erg, J = Joule

work W = watt

pressure ATM = atmosphere, bar

temperature degC = Celsius, degF = Fahrenheit, degK = Kelvin

viscosity poise, stoke

charge Abcoulomb, C = Coulomb, statcoulomb

current A = ampere, abampere, statampere

Name Description Value Reference
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The following metric prefixes can be used with the above units. The one- or 
two-letter prefixes can only be used with one-letter unit abbreviations.

There is no one-letter unit abbreviation for myria or mega since m means milli.

voltage Abvolt, V = volt

magnetic 
induction

T = Tesla, Wb = Weber

other units l, farad, mole, Gauss, Henry, Maxwell, Ohm

a atto 10–18

f femto 10–15 

p pico 10–12 

n nano 10–9 

u micro 10–6 

m milli 10–3 

c centi 10–2

d deci 10–1

dk deca 102 

k kilo 103 

myria 104 

mega 106 

g giga 109

t tera 1012 

Unit Description
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Example 1

In this example, Euler’s constant γ is obtained and printed. Euler’s constant is 
defined to be as follows:

PM, CONSTANT(’gamma’)

0.577216

Example 2

In this example, the speed of light is obtained using several different units.

c1 = CONSTANT(’SpeedLight’, ’meter/second’)

c2 = CONSTANT(’SpeedLight’, ’mile/second’)

c3 = CONSTANT(’SpeedLight’, ’cm/ns’)

PM, ’speed of light = ’, c1, c2, c3, $
Title =’             meters/second   ’ + $
’miles/second     cm/ns’

 meters/second  miles/second cm/ns

speed of light = 2.99792e+08    186282.      29.9793

Warning Errors

MATH_MASS_TO_FORCE — Conversion of units-of-mass to units-of-force 
required for consistency.

γ 1
k
--- lnn–

n 1–

∑n ∞→
lim=
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MACHINE Function 
Returns information describing the computer’s arithmetic.

Usage

result = MACHINE( )

Returned Value 

result — The information describing the computer’s arithmetic is returned in a 
structure.

Output Keywords

Float — If present and nonzero, a structure containing the information describ-
ing the single-precision, floating-point arithmetic is returned.

Double — If present and nonzero, a structure containing the information 
describing the single-precision, floating-point arithmetic is returned.

Discussion

Function MACHINE returns information describing the computer’s arithmetic. 
This can be used to make programs machine independent. The information 
returned by MACHINE is in the form of a structure. A different structure is 
used for each type: integer, float, and double. Depending on how MACHINE is 
called, a different structure is returned. 

The default action of MACHINE is to return the structure IMACHINE which 
contains integer information on the computer’s arithmetic. By using either the 
keywords Float or Double, information about the floating- or double-precision 
arithmetic is returned in structures FMACHINE or DMACHINE. 

The contents of the these structures are described below.

Integer Information: IMACHINE

Assume that integers are represented in M-digit, base A form as

σ xkAkM

∑
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where σ is the sign and 0 ≤ xk < A for k = 0, ..., M. Then, the following table 
describes the tags:

Assume that floating-point numbers are represented in N-digit, base B form as

where σ is the sign and 0 ≤ xk < B for k = 1, ..., N for and Emin ≤ E ≤ Emax.

Floating- and Double-precision Information: FMACHINE 
and DMACHINE

Information concerning the floating- or double-precision arithmetic of the com-
puter is contained in the structures FMACHINE and DMACHINE. These 
structures are returned into named variables by calling MACHINE with the key-
words Float for FMACHINE and Double for DMACHINE.

Tag Definition

BITS_PER_CHAR C, bits per character

INTEGER_BASE A, the base

INTEGER_DIGITS Ms, the number of base-A digits in a short int

MAX_INTEGER , the largest short int

LONG_DIGITS Ml, the number of base-A digits in a long int

MAX_LONG , the largest long int

Tag Definition

FLOAT_BASE B, the base

FLOAT_DIGITS Nf, the number of base-B digits in float

FLOAT_MIN_EXP , the smallest float exponent

FLOAT_MAX_EXP , the largest float exponent

DOUBLE_DIGETS Nd, the number of base-B digits in double

DOUBLE_MIN_EXP , the largest long int

DOUBLE_MAX_EXP , the number of base-B digits in double

AMs 1–

AMl 1–

σBE xkB k–N

∑

Eminf

Emaxf

Emind

Emaxd
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Assume that float numbers are represented in Nf- digit, base B form as

, 

where σ is the sign, 0 ≤ xk < B for k = 1, 2, ..., Nf and

. 

Note that if we make the assignment imach = MACHINE( ), then B = 
imach.FLOAT_BASE, Nf = imach.FLOAT_DIGITS,

, 

and

.

The ANSI/IEEE 754-1985 standard for binary arithmetic uses NaN (Not a 
Number) as the result of various otherwise illegal operations, such as computing 
0/0. If the assignment amach = MACHINE(/Float) is made, then on computers 
that do not support NaN, a value larger than amach. MAX_POS is returned in 
amach.NAN. On computers that do not have a special representation for infin-
ity, amach.POS_INF contains the same value as amach.MAX_POS.

The structure IMACHINE is defined by the following table:

Tag Definition

MIN_POS BEminf –1, the smallest positive number

MAX_POS BEmaxf(1 – B –Nf ), the largest number

MIN_REL_SPAC
E

B – Nf, the smallest relative spacing

MAX_REL_SPAC
E

B1– Nf, the largest relative spacing

LOG10_BASE log10(B)

NAN NaN

POS_INF positive machine infinity

NEG_INF negative machine infinity

σB
E

xkB
k–

k 1=

N∑

Emin f
E Emaxf

≤ ≤

Emin f
imach.FLOAT_MIN_EXP=

Emax
f

imach.FLOAT_MAX_EXP=
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The structure DMACHINE contains machine constants that define the com-
puter’s double arithmetic. Note that for double, if the assignment imach = 
MACHINE( ) is made, then 

B = imach.FLOAT_BASE, Nf = imach.DOUBLE_DIGITS,

, 

and

. 

Missing values in PV-WAVE:IMSL Mathematics procedures and functions are 
often indicated by NaN. There is no missing-value indicator for integers. Users 
ususally have to convert from their missing value indicators to NaN.

Example

In this example, all values returned by MACHINE are printed on a machine 
with IEEE (Institute for Electrical and Electronics Engineering) arithmetic.

i = machine()

f = machine(/Float)

d = machine(/Double)

; Call INFO with the keyword Structure set to view the contents of the structures.

INFO, i, f, d, /Structure

** Structure IMACHINE, 13 tags, length=52:

 BITS_PER_CHAR LONG              8

 INTEGER_BASE LONG              2

 INTEGER_DIGITS LONG             15

 MAX_INTEGER LONG          32767

 LONG_DIGITS LONG             31

 MAX_LONG LONG     2147483647

 FLOAT_BASE LONG              2

 FLOAT_DIGITS LONG             24

 FLOAT_MIN_EXP LONG           -125

 FLOAT_MAX_EXP LONG            128

 DOUBLE_DIGITS LONG             53

 DOUBLE_MIN_EXP LONG          -1021

 DOUBLE_MAX_EXP LONG           1024

** Structure FMACHINE, 8 tags, length=32:

Emin
f

imach.DOUBLE_MIN_EXP=

Emax f
imach.DOUBLE_MAX_EXP=
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 MIN_POS FLOAT    1.17549e-38

 MAX_POS FLOAT    3.40282e+38

 MIN_REL_SPACE FLOAT    5.96046e-08

 MAX_REL_SPACE FLOAT    1.19209e-07

 LOG_10 FLOAT       0.301030

 NAN FLOAT            NaN

 POS_INF FLOAT            Inf

 NEG_INF FLOAT           -Inf

** Structure DMACHINE, 8 tags, length=64:

 MIN_POS DOUBLE 2.2250739e-308

 MAX_POS DOUBLE 1.7976931e+308

 MIN_REL_SPACE DOUBLE  1.1102230e-16

 MAX_REL_SPACE DOUBLE  2.2204460e-16

 LOG_10 DOUBLE     0.30102998

 NAN DOUBLE            NaN

 POS_INF DOUBLE       Infinity

 NEG_INF DOUBLE      -Infinity
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NORM Function 
Computes various norms of a vector or the difference of two vectors.

Usage

result = NORM(x [, y])

Input Parameters

x — Vector for which the norm is to be computed.

y — If present, NORM computes the norm of (x – y).

Returned Value

result — The requested norm of the input vector. If the norm cannot be com-
puted, NaN is returned.

Input Keywords

One — If present and nonzero, computes the 1-norm 

.

Inf — If present and nonzero, computes the infinity norm max|xi|.

Output Keywords

Index_Max — Named variable into which the index of the element of x with 
the maximum modulus is stored. If Index_Max is used, then the keyword Inf 
also must be used. If the parameter y is specified, then the index of (x – y) with 
the maximum modulus is stored.

xi

i 0=

n 1–

∑
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Discussion

By default, NORM computes the Euclidean norm as follows:

If the keyword One is set, then the 1-norm

is returned. If the keyword Inf is set, the infinity norm max|xi| 

is returned. In the case of the infinity norm, the index of the element with maxi-
mum modulus also is returned.

If the parameter y is specified, the computations of the norms described above 
are performed on (x – y).

Example 1

In this example, the Euclidean norm of an input vector is computed.

x = [ 1.0, 3.0, -2.0, 4.0 ]

n = NORM(x)

PM, n, Title = ’Euclidean norm of x:’ 

Euclidean norm of x:

5.47723

Example 2

This example computes max | xi – yi | and prints the norm and index.

x = [1.0, 3.0, -2.0, 4.0]

y = [4.0, 2.0, -1.0, -5.0]

n = NORM(x, y, /Inf, Index_Max = imax)

PM, n, Title = ’Infinity norm of (x-y):’

Infinity norm of (x-y):

9.00000

xi
2

i 0=

n 1–

∑
 
 
 
 

1
2
---

xi

i 0=

n 1–

∑
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PM, imax, Title = $

’Element of (x-y) with maximum modulus:’

Element of (x-y) with maximum modulus:

3

MATRIX_NORM Function 
Computes various norms of a rectangular matrix, a matrix stored in band for-
mat, and a matrix stored in coordinate format.

Usage

result = MATRIX_NORM(a)
Computes various norms of a rectangular matrix.

result = MATRIX_NORM(n, nlca, nuca, a)
Computes various norms of a matrix stored in band format.

result = MATRIX_NORM(nrows, ncols, a)
Computes various norms of a matrix stored in coordinate format.

Input Parameters

a — Matrix for which the norm will be computed.

n — The order of matrix A.

nlca — Number of lower codiagonals of A.

nuca — Number of upper codiagonals of A.

nrows — The number of rows in matrix A.

ncols — The number of columns in matrix A.

Returned Value

result — The requested norm of the input matrix, by default, the Frobenius 
norm. If the norm cannot be computed, NaN is returned.

Input Keywords

Double — If present and nonzero, double precision is used.
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One_Norm — If present and nonzero, function MATRIX_NORM computes the 
one norm of matrix A.

Inf_Norm — If present and nonzero, function MATRIX_NORM computes the 
infinity norm of matrix A.

Symmetric — If present and nonzero, matrix A is stored in symmetric storage 
mode. Keyword Symmetric can not be used with a rectangular matrix.

Discussion

By default, MATRIX_NORM computes the Frobenius norm

If the keyword One_Norm is used, the one norm

is returned. If the keyword Inf_Norm is used, the infinity norm

is returned.

Example 1

Compute the Frobenius norm, infinity norm, and one norm of matrix A.

a  =  TRANSPOSE([[1.0, 2.0, -2.0, 3.0], $

                [-2.0, 1.0, 3.0, 0.0], $

                [0.0, 3.0, 1.0, -7.0], $

                [5.0, -2.0, 7.0, 6.0], $

                [4.0, 3.0, 4.0, 0.0]])

A A ij
j

n

i

m

2
2

0

1

0

1
1
2
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�
��
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��=
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−
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m
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frobenius_norm  =  MATRIX_NORM(a)

inf_norm  =  MATRIX_NORM(a, /Inf_Norm)

one_norm  =  MATRIX_NORM(a, /One_Norm)

PRINT, "Frobenius norm = ", frobenius_norm

PRINT, "Infinity norm  = ", inf_norm

PRINT, "One norm       = ", one_norm

Frobenius norm =       15.6844

Infinity norm  =       20.0000

One norm       =       17.0000

Example 2

Compute the Frobenius norm, infinity norm, and one norm of matrix A. Matrix 
A is stored in band storage mode.

nlca  =  1

nuca  =  1

n  =  4

a  =  [0.0, 2.0, 3.0, -1.0, 1.0, 1.0, $

       1.0, 1.0, 0.0, 3.0, 4.0, 0.0]

frobenius_norm  =  MATRIX_NORM(n, nlca, nuca, a)

inf_norm  =  MATRIX_NORM(n, nlca, nuca, a, /Inf_Norm)

one_norm  =  MATRIX_NORM(n, nlca, nuca, a, /One_Norm)

PRINT, "Frobenius norm = ", frobenius_norm

PRINT, "Infinity norm  = ", inf_norm

PRINT, "One norm       = ", one_norm

Frobenius norm =       6.55744

Infinity norm  =       5.00000

One norm       =       8.00000
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Example 3

Compute the Frobenius norm, infinity norm, and one norm of matrix A. Matrix 
A is stored in symmetric band storage mode.

nlca  =  2

nuca  =  2

n  =  6

a  =  [0.0, 0.0, 7.0, 3.0, 1.0, 4.0, $

       0.0, 5.0, 1.0, 2.0, 1.0, 2.0, $

       1.0, 2.0, 4.0, 6.0, 3.0, 1.0]

frobenius_norm  =  MATRIX_NORM(n, nlca, nuca, a, $

                          /Symmetric)

inf_norm  =  MATRIX_NORM(n, nlca, nuca, a, /Inf_Norm, $

                          /Symmetric)

one_norm  =  MATRIX_NORM(n, nlca, nuca, a, /One_Norm, $

                          /Symmetric)

PRINT, "Frobenius norm = ", frobenius_norm

PRINT, "Infinity norm  = ", inf_norm

PRINT, "One norm       = ", one_norm

Frobenius norm =       16.9411

Infinity norm  =       16.0000

One norm       =       16.0000

Example 4

Compute the Frobenius norm, infinity norm, and one norm of matrix A. Matrix 
A is stored in coordinate format.

nrows  =  6

ncols  =  6

a  =  REPLICATE(!F_Sp_Elem, 15)

a(*).row  =  [0, 1, 1, 1, 2, $

              3, 3, 3, 4, 4, $

              4, 4, 5, 5, 5]

a(*).col  =  [0, 1, 2, 3, 2, $

              0, 3, 4, 0, 3, $

              4, 5, 0, 1, 5]
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a(*).val  =  [10.0, 10.0, -3.0, -1.0, 15.0, $

              -2.0, 10.0, -1.0, -1.0, -5.0, $

              1.0, -3.0, -1.0, -2.0, 6.0]

frobenius_norm  =  MATRIX_NORM(nrows, ncols, a)

inf_norm  =  MATRIX_NORM(nrows, ncols, a, /Inf_Norm)

one_norm  =  MATRIX_NORM(nrows, ncols, a, /One_Norm)

PRINT, "Frobenius norm = ", frobenius_norm

PRINT, "Infinity norm  = ", inf_norm

PRINT, "One norm       = ", one_norm

Frobenius norm =       24.8395

Infinity norm  =       15.0000

One norm       =       18.0000

Example 5

Compute the Frobenius norm, infinity norm and one norm of matrix A. Matrix 
A is stored in symmetric coordinate format.

nrows  =  6

ncols  =  6

a  =  REPLICATE(!F_Sp_Elem, 9)

a(*).row  =  [0, 0, 0, $

              1, 1, 2, $

              2, 4, 4]

a(*).col  =  [0, 2, 5, $

              3, 4, 2, $

              5, 4, 5]

a(*).val  =  [10.0, -1.0, 5.0, $

              2.0, 3.0, 3.0, $

              4.0, -1.0, 4.0]

frobenius_norm  =  MATRIX_NORM(nrows, ncols, a, $

                                  /Symmetric)

inf_norm  =  MATRIX_NORM(nrows, ncols, a, /Inf_Norm, $

                                  /Symmetric)

one_norm  =  MATRIX_NORM(nrows, ncols, a, /One_Norm, $

                                  /Symmetric)
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PRINT, "Frobenius norm = ", frobenius_norm

PRINT, "Infinity norm  = ", inf_norm

PRINT, "One norm       = ", one_norm

Frobenius norm =       15.8745

Infinity norm  =       16.0000

One norm       =       16.0000

CMAST_ERR_STOP Function 
Options for error recovery in Math and Stat options.

Usage

CMAST_ERR_STOP, lev

Input Parameters

lev — Integer specifying the stopping level.

Discussion

Function CMAST_ERR_STOP allows users to define how the Math and Stat 
options will behave when a Terminal or Fatal error occurs. Setting lev to one 
will force the Math/Stat routine to stop execution when a Terminal or Fatal 
error occurs (default). Setting lev to zero will force the Math/Stat routine to 
continue execution when a Terminal or Fatal error occurs. 
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CMAST_ERR_PRINT Procedure 
Sets options for error printing in Math and Stat options.

Usage

CMAST_ERR_PRINT, lev

Input Parameters

lev — Integer specifying the printing level.

Discussion

Function CMAST_ERR_PRINT allows users to define how the Math and Stat 
options will behave when an error occurs. Setting lev to two will force the 
Math/Stat routine to print all error messages that occur (default). Setting lev to 
one will force the Math/Stat routine to print only Terminal and Fatal error mes-
sages that occur. Setting lev to zero will force the Math/Stat to not print any 
error messages. 

Example

See Example 1 for MINCONGEN (Chapter 8, Optimization). 
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CMAST_ERR_TRANS Function 
Determines if an Informational Error has occurred.

Usage

result = CMAST_ERR_TRANS(arg)

Output Parameters

arg — Can be either a scalar string specifying a particular Informational Error 
or an integer specifying the internal code of an Informational Error.

Returned Value

result — If arg is a scalar string specifying a valid Informational Error, then 
the return value is the integer error-code value of the Informational Error. If arg 
is an integer specifying a valid Informational Error code, then a string specify-
ing the Informational Error is returned.

Discussion

Function CMAST_ERROR_TRANS is designed to check programs for specific 
Informational Errors. PV-WAVE:IMSL Mathematics mathematical functions 
attempt to detect user errors and handle them in a way that provides as much 
information to the user as possible. To do this, five levels of Informational 
Error severity, in addition to the basic PV-WAVE:IMSL Mathematics error-han-
dling facility, are recognized. Following a call to a mathematical or statistical 
function, the system variables !Error and !Cmast_Err contain information con-
cerning the current error state. Variable !Error contains the error number of the 
last error, and !Cmast_Err is set either to zero, which indicates that an Informa-
tional Error did not occur, or to the error code of the last Informational Error 
that did occur.

The user can interact with the PV-WAVE:IMSL Mathematics error-handling 
system with respect to Informational Errors in two ways: (1) change the default 
printing actions and (2) determine the code of an Informational Error so as to 
take corrective action. To change the default printing action, the system vari-
able !Quiet is set to a nonzero value. To allow for corrective action to be taken 
based on the existence of a particular Informational Error, function 
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CMAST_ERR_TRANS retrieves the integer code for an Informational Error given 
a scalar string specifying the name given to the error.

In the program segment below, the Cholesky factorization of a matrix is to be 
performed. If it is determined that the matrix is not nonnegative definite (and 
often this is not immediately obvious), the program is to take a different branch.

x = CHNNDFAC, a, fac

; Call CHNNDFAC with a matrix that may not be nonnegative definite.

IF (CMAST_ERROR_TRANS($
’MATH_NOT_NONNNEG_DEFINITE’) EQ $
!Cmast_Err))$

; Check the system variable Cmast_Err to see if it contains the
; error code for the error 
; MATH_NOT_NONNNEG_DEFINITE. 

THEN ;... Handle matrix that is not nonnegative definite.



A-1

APPENDIX

A

References 
Abramowitz, Milton, and Irene A. Stegun (editors) (1964), Handbook of Mathematical 

Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of 
Standards, Washington, D.C.

Afifi, A.A., and S.P. Azen (1979), Statistical Analysis: A Computer Oriented Approach, 2d 
ed., Academic Press, New York.

Ahrens, J.H., and U. Dieter (1974), Computer methods for sampling from gamma, beta, 
Poisson, and binomial distributions, Computing, 12, 223–246.

Akaike, H. (1978), A Bayesian analysis of the minimum AIC procedure, Ann. Institute 
Statist. Mathematics., 30A, 9–14.

Akaike, H. (1973), Information theory and an extension of maximum likelihood principle, 
Proc. 2nd International Symposium on Information Theory, Eds. B.N. Petrov and 
F. Csaki, 267–281.

Akima, H. (1978), A method of bivariate interpolation and smooth surface fitting for 
irregularly distributed data points, ACM Transactions on Mathematical Software, 4, 
148–159.

Akima, H. (1970), A new method of interpolation and smooth curve fitting based on local 
procedures, Journal of the ACM, 17, 589–602.

Anderson, R.L., and T.A. Bancroft (1952), Statistical Theory in Research, McGraw-Hill 
Book Company, New York.

Anderson, T.W. (1971), The Statistical Analysis of Time Series, John Wiley & Sons, New 
York.



A-2  Appendix A: References PV-WAVE:IMSL Mathematics Reference

Ashcraft, C. (1987), A vector implementation of the multifrontal method for large sparse 
symmetric positive definite systems, Technical Report ETA-TR-51, Engineering 
Technology Applications Division, Boeing Computer Services, Seattle, Washington.

Ashcraft, C., R. Grimes, J. Lewis, B. Peyton, and H. Simon (1987), Progress in sparse 
matrix methods for large linear systems on vector supercomputers. Intern. J. 
Supercomputer Applic., 1(4), 10-29.

Atkinson, A.C. (1979), A family of switching algorithms for the computer generation of 
beta random variates, Biometrika, 66, 141–145.

Atkinson, A.C. (1985), Plots, Transformations, and Regression, Claredon Press, Oxford.

Atkinson, Ken (1978), An Introduction to Numerical Analysis, John Wiley & Sons, New 
York. 

Barnett, A.R. (1981), An algorithm for regular and irregular Coulomb and Bessel functions 
of real order to machine accuracy, Computer Physics Communication, 21, 297–314.

Barrett, J.C., and M.J.R. Healy (1978), A remark on Algorithm AS 6: Triangular 
decomposition of a symmetric matrix, Applied Statistics, 27, 379–380.

Bays, Carter, and S.D. Durham (1976), Improving a poor random number generator, ACM 
Transactions on Mathematical Software, 2, 59–64.

Bishop, Yvonne M.M., Stephen E. Fienberg, and Paul W. Holland (1975), Discrete 
Multivariate Analysis: Theory and Practice, MIT Press, Cambridge, Mass.

Blom, Gunnar (1958), Statistical Estimates and Transformed Beta-Variables, John Wiley & 
Sons, New York.

de Boor, Carl (1978), A Practical Guide to Splines, Springer-Verlag, New York.

Bosten, Nancy E., and E.L. Battiste (1974), Incomplete beta ratio, Communications of the 
ACM, 17, 156–157.

Box, George E.P., and Gwilyn M. Jenkins (1976), Time Series Analysis: Forecasting and 
Control, revised ed., Holden-Day, Oakland.

Box, G.E.P., and P.W. Tidwell (1962), Transformation of the independent variables, 
Technometrics, 4, 531–550.

Brent, Richard P. (1973), Algorithms for Minimization without Derivatives, Prentice-Hall, 
Inc., Englewood Cliffs, New Jersey.

Brigham, E. Oran (1974), The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, 
New Jersey.



 A-3

Brown, Morton B., and Jacqualine K. Benedetti (1977), Sampling behavior and tests for 
correlation in two-way contingency tables, Journal of the American Statistical 
Association, 42, 309–315.

Brown, Morton E. (1983), MCDP4F, two-way and multiway frequency tables—measures of 
association and the log-linear model (complete and incomplete tables), in BMDP 
Statistical Software, 1983 Printing with Additions, (edited by W.J. Dixon), University of 
California Press, Berkeley.

Carlson, R.E., and T.A. Foley (1991),The parameter R2 in multiquadric interpolation, 
Computer Mathematical Applications, 21, 29–42.

Cheng, R.C.H. (1978), Generating beta variates with nonintegral shape parameters, 
Communications of the ACM, 21, 317–322.

Cohen, E. Richard, and Barry N. Taylor (1986), The 1986 Adjustment of the Fundamental 
Physical Constants, Codata Bulletin, Pergamon Press, New York.

Conover, W.J. (1980), Practical Nonparametric Statistics, 2d ed., John Wiley & Sons, New 
York.

Conover, W.J., and Ronald L. Iman (1983), Introduction to Modern Business Statistics, John 
Wiley & Sons, New York.

Cook, R. Dennis, and Sanford Weisberg (1982), Residuals and Influence in Regression, 
Chapman and Hall, New York.

Cooley, J.W., and J.W. Tukey (1965), An algorithm for the machine computation of 
complex Fourier series, Mathematics of Computation, 19, 297–301. 

Cooper, B.E. (1968), Algorithm AS4, An auxiliary function for distribution integrals, 
Applied Statistics, 17, 190–192.

Craven, Peter, and Grace Wahba (1979), Smoothing noisy data with spline functions, 
Numerische Mathematik, 31, 377–403.

Crowe, Keith, Yuan-An Fan, Jing Li, Dale Neaderhouser, and Phil Smith (1990), A direct 
sparse linear equation solver using linked list storage, IMSL Technical Report 9006, 
IMSL, Houston.

D’Agostino, Ralph B., and Michael A. Stevens (1986), Goodness-of-Fit Techniques, Marcel 
Dekker, New York.

Davis, Philip F., and Philip Rabinowitz (1984), Methods of Numerical Integration, 
Academic Press, Orlando, Florida.

Dallal, Gerald E. and Leland Wilkinson (1986), An analytic approximation to the 
distribution of Lilliefor’s test statistic for normality, The American Statistician, 40, 294–
296.



A-4  Appendix A: References PV-WAVE:IMSL Mathematics Reference

Dennis, J.E., Jr., and Robert B. Schnabel (1983), Numerical Methods for Unconstrained 
Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, New Jersey.

Devore, Jay L (1982), Probability and Statistics for Engineering and Sciences, Brooks/Cole 
Publishing Company, Monterey, Calif.

Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart (1979), LINPACK User’s Guide, 
SIAM, Philadelphia.

Draper, N.R., and H. Smith (1981), Applied Regression Analysis, 2d ed., John Wiley & 
Sons, New York.

Du Croz, Jeremy, P. Mayes, and G. Radicati (1990), Factorization of band matrices using 
Level-3 BLAS, Proceedings of CONPAR 90-VAPP IV, Lecture Notes in Computer 
Science, Springer, Berlin, 222.

Duff, I. S., and J. K. Reid (1983), The multifrontal solution of indefinite sparse symmetric 
linear equations. ACM Transactions on Mathematical Software, 9, 302-325.

Duff, I. S., and J. K. Reid (1984), The multifrontal solution of unsymmetric sets of linear 
equations. SIAM Journal on Scientific and Statistical Computing, 5, 633-641.

Duff, I. S., A. M. Erisman, and J. K. Reid (1986), Direct Methods for Sparse Matrices, 
Clarendon Press, Oxford.

Efroymson, M.A. (1960), Multiple regression analysis, Mathematical Methods for Digital 
Computers, Volume 1, (edited by A. Ralston and H. Wilf), John Wiley & Sons, New 
York, 191–203.

Emmett, W.G. (1949), Factor analysis by Lawless method of maximum likelihood, British 
Journal of Psychology, Statistical Section, 2, 90–97.

Enright, W.H., and J.D. Pryce (1987), Two FORTRAN packages for assessing initial value 
methods, ACM Transactions on Mathematical Software, 13, 1–22.

Farebrother, R.W., and G. Berry (1974), A remark on Algorithm AS 6: Triangular 
decomposition of a symmetric matrix, Applied Statistics, 23, 477.

Fisher, R.A. (1936), The use of multiple measurements in taxonomic problems, The Annals 
of Eugenics, 7, 179–188.

Fishman, George S., and Louis R. Moore (1982), A statistical evaluation of multiplicative 
congruential random number generators with modulus 231 – 1, Journal of the American 
Statistical Association, 77, 129–136.

Forsythe, G.E. (1957), Generation and use of orthogonal polynomials for fitting data with a 
digital computer, SIAM Journal on Applied Mathematics, 5, 74–88.



 A-5

Franke, R. (1982), Scattered data interpolation: Tests of some methods, Mathematics of 
Computation, 38, 181–200.

Furnival, G.M. and R.W. Wilson, Jr. (1974), Regressions by leaps and bounds, 
Technometrics, 16, 499–511.

Gautschi, Walter (1968), Construction of Gauss-Christoffel quadrature formulas, 
Mathematics of Computation, 22, 251–270.

Gear, C.W. (1971), Numerical Initial Value Problems in Ordinary Differential Equations, 
Prentice-Hall, Englewood Cliffs, New Jersey.

Gentleman, W. Morven (1974), Basic procedures for large, sparse or weighted linear least 
squares problems, Applied Statistics, 23, 448–454.

George, A., and J. W. H. Liu (1981), Computer Solution of Large Sparse Positive Definite 
Systems, Prentice-Hall, Englewood Cliffs, New Jersey.

Gill, P.E., W. Murray, M.A. Saunders, and M.H. Wright (1985), Model building and 
practical aspects of nonlinear programming, Computational Mathematical 
Programming, (edited by K. Schittkowski), NATO ASI Series, 15, Springer-Verlag, 
Berlin, Germany.

Girschick, M.A. (1939), On the sampling theory of roots of determinantal equations, Annals 
of Mathematical Statistics, 10, 203–224.

Goldfarb, D., and A. Idnani (1983), A numerically stable dual method for solving strictly 
convex quadratic programs, Mathematical Programming, 27, 1–33.

Golub, G.H. (1973), Some modified matrix eigenvalue problems, SIAM Review, 15, 318–
334.

Golub, Gene H., and Charles F. Van Loan (1983), Matrix Computations, Johns Hopkins 
University Press, Baltimore, Md.

Golub, G.H., and C.F. Van Loan (1989), Matrix Computations, 2d ed., The Johns Hopkins 
University Press, Baltimore, Maryland.

Golub, G.H., and J.H. Welsch (1969), Calculation of Gaussian quadrature rules, 
Mathematics of Computation, 23, 221–230.

Goodnight, James H. (1979), A tutorial on the SWEEP operator, The American Statistician, 
33, 149–158.

Gregory, Robert, and David Karney (1969), A Collection of Matrices for Testing 
Computational Algorithms, Wiley-Interscience, John Wiley & Sons, New York.

Griffin, R., and K.A. Redish (1970), Remark on Algorithm 347: An efficient algorithm for 
sorting with minimal storage, Communications of the ACM, 13, 54.



A-6  Appendix A: References PV-WAVE:IMSL Mathematics Reference

Grosse, Eric (1980), Tensor spline approximation, Linear Algebra and its Applications, 34, 
29–41.

Hageman, Louis A., and David M. Young (1981), Applied Iterative Methods, Academic 
Press, New York.

Haldane, J.B.S. (1939), The mean and variance of χ2 when used as a test of homogeneity, 
when expectations are small, Biometrika, 31, 346.

Hardy, R.L. (1971), Multiquadric equations of topography and other irregular surfaces, 
Journal of Geophysical Research, 76, 1905–1915.

Harman, Harry H. (1976), Modern Factor Analysis, 3d ed. revised, University of Chicago 
Press, Chicago.

Hart, John F., E.W. Cheney, Charles L. Lawson, Hans J. Maehly, Charles K. Mesztenyi, 
John R. Rice, Henry G. Thacher, Jr., and Christoph Witzgall (1968), Computer 
Approximations, John Wiley & Sons, New York.

Hartigan, John A. (1975), Clustering Algorithms, John Wiley & Sons, New York.

Hartigan, J.A., and M.A. Wong (1979), Algorithm AS 136: A K-means clustering algorithm, 
Applied Statistics, 28, 100–108.

Hayter, Anthony J. (1984), A proof of the conjecture that the Tukey-Kramer multiple 
comparisons procedure is conservative, Annals of Statistics, 12, 61–75.

Healy, M.J.R. (1968), Algorithm AS 6: Triangular decomposition of a symmetric matrix, 
Applied Statistics, 17, 195–197.

Hemmerle, William J. (1967), Statistical Computations on a Digital Computer, Blaisdell 
Publishing Company, Waltham, Mass.

Higham, Nicholas J. (1988), FORTRAN Codes for estimating the one-norm of a real or 
complex matrix, with applications to condition estimation, ACM Transactions on 
Mathematical Software, 14, 381-396.

Hildebrand, F.B. (1956), Introduction to Numerical Analysis, McGraw Hill.

Hindmarsh, A.C. (1974), GEAR: Ordinary Differential Equation System Solver, Lawrence 
Livermore National Laboratory Report UCID-30001, Revision 3, Lawrence Livermore 
National Laboratory, Livermore, California.

Hinkley, David (1977), On quick choice of power transformation, Applied Statistics, 26, 67–
69.

Hill, G.W. (1970), Student’s t-distribution, Communications of the ACM, 13, 617–619. 

Hoaglin, David C., and Roy E. Welsch (1978), The hat matrix in regression and ANOVA, 
The American Statistician, 32, 17–22.



 A-7

Hocking, R.R. (1972), Criteria for selection of a subset regression: Which one should be 
used?, Technometrics, 14, 967–970.

Huber, Peter J. (1981), Robust Statistics, John Wiley & Sons, New York. 

Hull, T.E., W.H. Enright, and K.R. Jackson (1976), User’s Guide for DVERK–A Subroutine 
for Solving Nonstiff ODEs, Department of Computer Science Technical Report 100, 
University of Toronto.

Irvine, Larry D., Samuel P. Marin, and Philip W. Smith (1986), Constrained interpolation 
and smoothing, Constructive Approximation, 2, 129–151. 

Jackson, K.R., W.H. Enright, and T.E. Hull (1978), A theoretical criterion for comparing 
Runge-Kutta formulas, SIAM Journal of Numerical Analysis, 15, 618 – 641. 

Jenkins, M.A. (1975), Algorithm 493: Zeros of a real polynomial, ACM Transactions on 
Mathematical Software, 1, 178–189. 

Jenkins, M.A., and J.F. Traub (1970), A three-stage algorithm for real polynomials using 
quadratic iteration, SIAM Journal on Numerical Analysis, 7, 545–566.

John, Peter W.M. (1971), Statistical Design and Analysis of Experiments, Macmillan 
Company, New York.

Jöhnk, M.D. (1964), Erzeugung von Betaverteilten und Gammaverteilten Zufalls-zahlen, 
Metrika, 8, 5–15.

Jöreskog, K.G. (1977), Factor analysis by least squares and maximum-likelihood methods, 
Statistical Methods for Digital Computers, (edited by Kurt Enslein, Anthony Ralston, 
and Herbert S. Wilf), John Wiley & Sons, New York, 125–153.

Kaiser, H.F. (1963), Image analysis, Problems in Measuring Change, (edited by C. Harris), 
University of Wisconsin Press, Madison, Wis.

Kaiser, H.F., and J. Caffrey (1965), Alpha factor analysis, Psychometrika, 30, 1–14.

Kendall, Maurice G., and Alan Stuart (1973), The Advanced Theory of Statistics, Volume 2: 
Inference and Relationship, 3rd ed., Charles Griffin & Company, London.

Kendall, Maurice G., and Alan Stuart (1979), The Advanced Theory of Statistics, 
Volume 2: Inference and Relationship, 4th ed., Oxford University Press, New York.

Kendall, Maurice G., Alan Stuart, and J. Keith Ord (1983), The Advanced Theory of 
Statistics, Volume 3: Design and Analysis, and Time Series, 4th. ed., Oxford University 
Press, New York.

Kennedy, William J., Jr. and James E. Gentle (1980), Statistical Computing, Marcel Dekker, 
New York.



A-8  Appendix A: References PV-WAVE:IMSL Mathematics Reference

Kinnucan, P., and H. Kuki (1968), A Single Precision Inverse Error Function Subroutine, 
Computation Center, University of Chicago.

Kirk, Roger E. (1982), Experimental Design: Procedures for the Behavioral Sciences, 2d 
ed., Brooks/Cole Publishing Company, Monterey, Calif.

Knuth, Donald E. (1981), The Art of Computer Programming, Volume 2: Seminumerical 
Algorithms, 2d ed., Addison-Wesley, Reading, Mass.

Lawley, D.N., and A.E. Maxwell (1971), Factor Analysis as a Statistical Method, 2d ed., 
Butterworth, London.

Learmonth, G.P., and P.A.W. Lewis (1973), Naval Postgraduate School Random Number 
Generator Package LLRANDOM, NPS55LW73061A, Naval Postgraduate School, 
Monterey, Calif.

Leavenworth, B. (1960), Algorithm 25: Real zeros of an arbitrary function, Communications 
of the ACM, 3, 602.

Lehmann, E.L. (1975), Nonparametrics: Statistical Methods Based on Ranks, Holden-Day, 
San Francisco.

Levenberg, K. (1944), A method for the solution of certain problems in least squares, 
Quarterly of Applied Mathematics, 2, 164–168.

Lewis, P.A.W., A.S. Goodman, and J.M. Miller (1969), A pseudorandom number generator 
for the System/360, IBM Systems Journal, 8, 136–146.

Liepman, David S. (1964), Mathematical constants, Handbook of Mathematical Functions, 
Dover Publications, New York.

Lilliefors, H.W. (1967), On the Kolmogorov-Smirnov test for normality with mean and 
variance unknown, Journal of the American Statistical Association, 62, 534–544.

Liu, J. W. H. (1986), On the storage requirement in the out-of-core multifrontal method for 
sparse factorization. ACM Transactions on Mathematical Software, 12, 249-264.

Liu, J. W. H. (1987), A collection of routines for an implementation of the multifrontal 
method, Technical Report CS-87-10, Department of Computer Science, York University, 
North York, Ontario, Canada.

Liu, J. W. H. (1989), The multifrontal method and paging in sparse Cholesky factorization. 
ACM Transactions on Mathematical Software, 15, 310-325.

Liu, J. W. H. (1990), The multifrontal method for sparse matrix solution: theory and 
practice, Technical Report CS-90-04, Department of Computer Science, York 
University, North York, Ontario, Canada.



 A-9

Longley, James W. (1967), An appraisal of least-squares programs for the electronic 
computer from the point of view of the user, Journal of the American Statistical 
Association, 62, 819–841.

Maindonald, J.H. (1984), Statistical Computation, John Wiley & Sons, New York.

Mardia, K.V., J.T. Kent, J.M. Bibby (1979), Multivariate Analysis, Academic Press, New 
York.

Marquardt, D. (1963), An algorithm for least-squares estimation of nonlinear parameters, 
SIAM Journal on Applied Mathematics, 11, 431–441.

Martin, R.S., and J.H. Wilkinson (1971), The Modified LR algorithm for complex 
Hessenberg matrices, Volume II: Linear Algebra Handbook, Springer, New York.

Micchelli, C.A. (1986), Interpolation of scattered data: Distance matrices and conditionally 
positive definite functions, Constructive Approximation, 2, 11–22.

Micchelli, C.A., T.J. Rivlin, and S. Winograd (1976), The optimal recovery of smooth 
functions, Numerische Mathematik, 26, 279–285. 

Micchelli, C.A., Philip W. Smith, John Swetits, and Joseph D. Ward (1985), Constrained Lp 
approximation, Constructive Approximation, 1, 93–102.

Müller, D.E. (1956), A method for solving algebraic equations using an automatic computer, 
Mathematical Tables and Aids to Computation, 10, 208–215. 

Milliken, George A., and Dallas E. Johnson (1984), Analysis of Messy Data, Volume 1: 
Designed Experiments, Van Nostrand Reinhold, New York.

Miller, Rupert G., Jr. (1980), Simultaneous Statistical Inference, 2d ed., Springer-Verlag, 
New York.

Moré, Jorge, Burton Garbow, and Kenneth Hillstrom (1980), User Guide for MINPACK-1, 
Argonne National Laboratory Report ANL 80–74, Argonne, Illinois.

Murtagh, Bruce A. (1981), Advanced Linear Programming: Computation and Practice, 
McGraw-Hill, New York.

Murty, Katta G. (1983), Linear Programming, John Wiley and Sons, New York. 

Nelson, Peter (1989), Multiple Comparisons of Means Using Simultaneous Confidence 
Intervals, Journal of Quality Technology, 21, 232–241.

Neter, John, and William Wasserman (1974), Applied Linear Statistical Models, Richard D. 
Irwin, Homewood, Ill.

Neter, John, William Wasserman, and Michael H. Kutner (1983), Applied Linear Regression 
Models, Richard D. Irwin, Homewood, Illinois. 



A-10  Appendix A: References PV-WAVE:IMSL Mathematics Reference

Owen, D.B. (1962), Handbook of Statistical Tables, Addison-Wesley Publishing Company, 
Reading, Massachusetts.

Owen, D.B. (1965), A special case of the bivariate non-central t distribution, Biometrika, 
52, 437–446.

Parlett, B.N. (1980) The Symmetric Eigenvalue Problem, Prentice-Hall, Inc., Englewood 
Cliffs, New Jersey. 

Petro, R. (1970), Remark on Algorithm 347: An efficient algorithm for sorting with 
minimal storage, Communications of the ACM, 13, 624.

Piessens, R., E. deDoncker-Kapenga, C.W. Überhuber, and D.K. Kahaner (1983), 
QUADPACK, Springer-Verlag, New York.

Powell, M.J.D. (1978), A fast algorithm for nonlinearly constrained optimization 
calculations, in Numerical Analysis Proceedings, Dundee 1977, Lecture Notes in 
Mathematics, (edited by G. A. Watson), 630, Springer-Verlag, Berlin, Germany, 144–
157.

Powell, M.J.D. (1985), On the quadratic programming algorithm of Goldfarb and Idnani, 
Mathematical Programming Study, 25, 46–61.

Powell, M.J.D. (1983), ZQPCVX a FORTRAN subroutine for convex quadratic 
programming, DAMTP Report 1983/NA17, University of Cambridge, Cambridge, 
England. 

Reinsch, Christian H. (1967), Smoothing by spline functions, Numerische Mathematik, 10, 
177–183.

Rice, J.R. (1983), Numerical Methods, Software, and Analysis, Mcguire-Hill, New York.

Rietman, Edward (1989), Exploring the Geometry of Nature, Windcrest Books, Blue Ridge 
Summit, Pennsylvania.

Robinson, Enders A. (1967), Multichannel Time Series Analysis with Digital Computer 
Programs, Holden-Day, San Francisco.

Royston, J.P. (1982a), An extension of Shapiro and Wilk’s W test for normality to large 
samples, Applied Statistics, 31, 115–124.

Royston, J.P. (1982b), The W test for normality, Applied Statistics, 31, 176–180.

Royston, J.P. (1982c), Expected normal order statistics (exact and approximate), Applied 
Statistics, 31, 161–165.

Saad, Y., and M. H. Schultz (1986), GMRES: A generalized minimum residual algorithm 
for solving nonsymmetric linear systems, SIAM Journal of Scientific and Statistical 
Computing, 7, 856-869.



 A-11

Sallas, William M., and Abby M. Lionti (1988), Some useful computing formulas for the 
nonfull rank linear model with linear equality restrictions, IMSL Technical Report 
8805, IMSL, Houston.

Savage, I. Richard (1956), Contributions to the theory of rank order statistics–the two-
sample case, Annals of Mathematical Statistics, 27, 590–615.

Schittkowski, K. (1980), Nonlinear programming codes, Lecture Notes in Economics and 
Mathematical Systems, 183, Springer-Verlag, Berlin, Germany.

Schittkowski, K. (1983), On the convergence of a sequential quadratic programming method 
with an augmented Lagrangian line search function, Mathematik Operations for Schung 
and Statistik, Serie Optimization, 14, 197–216.

Schittkowski, K. (1986), NLPQL: A FORTRAN subroutine solving constrained nonlinear 
programming problems, (edited by Clyde L. Monma), Annals of Operations Research, 
5, 485–500.

Schmeiser, Bruce (1983), Recent advances in generating observations from discrete random 
variates, Computer Science and Statistics: Proceedings of the Fifteenth Symposium on 
the Interface, (edited by James E. Gentle), North-Holland Publishing Company, 
Amsterdam, 154–160.

Schmeiser, Bruce W., and A.J.G. Babu (1980), Beta variate generation via exponential 
majorizing functions, Operations Research, 28, 917–926. 

Schmeiser, Bruce, and Voratas Kachitvichyanukul (1981), Poisson Random Variate 
Generation, Research Memorandum 81-4, School of Industrial Engineering, Purdue 
University, West Lafayette, Ind.

Schmeiser, Bruce W., and Ram Lal (1980), Squeeze methods for generating gamma 
variates, Journal of the American Statistical Association, 75, 679–682.

Schwartz, G. (1978), Estimating the dimension of a model, Ann. Statist., 6, 461-464.

Searle, S.R. (1971), Linear Models, John Wiley & Sons, New York.

Shampine, L.F. (1975), Discrete least-squares polynomial fits, Communications of the ACM, 
18, 179–180. 

Shampine, L.F., and C.W. Gear (1979), A user’s view of solving stiff ordinary differential 
equations, SIAM Review, 21, 1–17.

Singleton, R.C. (1969), Algorithm 347: An efficient algorithm for sorting with minimal 
storage, Communications of the ACM, 12, 185–187.

Smith, B.T., J.M. Boyle, J.J. Dongarra, B.S. Garbow, Y. Ikebe, V.C. Klema, and C.B. Moler 
(1976), Matrix Eigensystem Routines—EISPACK Guide, Springer-Verlag, New York. 



A-12  Appendix A: References PV-WAVE:IMSL Mathematics Reference

Smith, P.W. (1990), On knots and nodes for spline interpolation, Algorithms for 
Approximation II, J.C. Mason and M.G. Cox, Eds., Chapman and Hall, New York. 

Snedecor, George W., and William G. Cochran (1967), Statistical Methods, 6th ed., Iowa 
State University Press, Ames, Iowa.

Spurrier, John D., and Steven P. Isham (1985), Exact simultaneous confidence intervals for 
pairwise comparisons of three normal means, Journal of the American Statistical 
Association, 80, 438–442.

Stewart, G.W. (1973), Introduction to Matrix Computations, Academic Press, New York. 

Stoer, J. (1985), Principles of sequential quadratic programming methods for solving 
nonlinear programs, Computational Mathematical Programming, (edited by K. 
Schittkowski), NATO ASI Series, 15, Springer-Verlag, Berlin, Germany. 

Stoline, Michael R. (1981), The status of multiple comparisons: simultaneous estimation of 
all pairwise comparisons in one-way ANOVA designs, The American Statistician, 35, 
134–141.

Strecok, Anthony J. (1968), On the calculation of the inverse of the error function, 
Mathematics of Computation, 22, 144–158. 

Stroud, A.H., and D.H. Secrest (1963), Gaussian Quadrature Formulae, Prentice-Hall, 
Englewood Cliffs, New Jersey.

Temme, N.M. (1975), On the numerical evaluation of the modified Bessel function of the 
third kind, Journal of Computational Physics, 19, 324–337.

Thompson, I.J., and A.R. Barnett (1987), Modified Bessel functions Iv(z) and Kv(z) of real 
order and complex argument, to selected accuracy, Computer Physics Communication, 
47, 245–257.

Tukey, John W. (1962), The future of data analysis, Annals of Mathematical Statistics, 33, 
1–67.

Velleman, Paul F., and David C. Hoaglin (1981), Applications, Basics, and Computing of 
Exploratory Data Analysis, Duxbury Press, Boston. 

Walker, H. F. (1988), Implementation of the GMRES method using Householder 
transformations, SIAM Journal of Scientific and Statistical Computing, 9, 152-163.

Watkins, David S., L. Elsner (1991), Convergence of algorithm of decomposition type for 
the eigenvalue problem, Linear Algebra Applications, 143, 19–47.

Weisberg, S. (1985), Applied Linear Regression, 2nd edition, John Wiley & Sons, New 
York.



B-1

APPENDIX

B

Summary of Routines
ACCR_INT_MAT Function page 433

Evaluates the interest which has accrued on a security that pays 
interest at maturity.

ACCR_INT_PER Function page 435
Evaluates the interest which has accrued on a security that pays 
interest periodically.

AIRY_AI Function page 390
Evaluates the Airy function.

AIRY_BI Function page 392
Evaluates the Airy function of the second kind.

BESSI Function page 370
Evaluates a modified Bessel function of the first kind with real 
order and real or complex parameters.

BESSI_EXP Function page 378
Evaluates the exponentially scaled modified Bessel function of the 
first kind of orders zero and one.

BESSJ Function page 372
Evaluates a Bessel function of the first kind with real order and 
real or complex parameters.

BESSK Function page 374
Evaluates a modified Bessel function of the second kind with real 
order and real or complex parameters.



B-2  Appendix B: Summary of Routines PV-WAVE:IMSL Mathematics Reference

BESSK_EXP Function page 379
Evaluates the exponentially scaled modified Bessel function of the 
third kind of orders zero and one.

BESSY Function page 376
Evaluates a Bessel function of the second kind with real order and 
real or complex parameters.

BETA Function page 361
Evaluates the real beta function B(x,y).

BETACDF Function page 549
Evaluates the beta probability distribution function.

BETAI Function page 364
Evaluates the real incomplete beta function.

BILINEAR Function page 186
Bilinear interpolation at a set of reference points

BINOMIALCDF Function page 551
Evaluates the binomial distribution function.

BINORMALCDF Function page 536
Evaluates the bivariate normal distribution function.

BOND_EQV_YIELD Function page 437
Evaluates the bond-equivalent yield of a Treasury bill.

BSINTERP Function page 120
Computes a one- or two-dimensional spline interpolant.

BSKNOTS Function page 128
Computes the knots for a spline interpolant.

BSLSQ Function page 144
Computes a one- or two-dimensional, least-squares spline 
approximation.

CHFAC Procedure page 27
Computes the Cholesky factor, L, of a real or complex symmetric 
positive definite matrix A, such that A = LLT

CHISQCDF Function page 538
Evaluates the chi-squared distribution function. Using a keyword, 
the inverse of the chi-squared distribution can be evaluated.

CHISQTEST Function page 490
Chi-squared goodness-of-fit test
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CHNNDFAC Procedure page 42
Computes the Cholesky factorization of the real matrix A such that 
A = RTR = LLT. 

CHNNDSOL Function page 39
Solves a real symmetric nonnegative definite system of linear 
equations Ax = b. Computes the solution to Ax = b given the 
Cholesky factor.

CHSOL Function page 24
Solves a symmetric positive definite system of real or complex lin-
ear equations Ax = b.

CMAST_ERR_PRINT Procedure page 578
Sets options for error printing in Math and Stat options.

CMAST_ERR_STOP Procedure page 577
Sets options for error recovery in Math and Stat options.

CMAST_ERR_TRANS Function page 579
Informational Error codes for routine

CONLSQ Function page 154
Computes a least-squares constrained spline approximation.

CONSTANT Function page 560
Returns the value of various mathematical and physical constants.

CONVEXITY Function page 439
Evaluates the convexity for a security.

CONVOL1D Function page 285
Computes the discrete convolution of two one dimensional arrays.

CORR1D Function page 288
Compute the discrete correlation of two one-dimensional arrays.

COUPON_DAYS Function page 441
Evaluates the number of days in the coupon period containing the 
settlement date.

COUPON_DNC Function page 447
Evaluates the number of days starting with the settlement date 
and ending with the next coupon date.

COUPON_NCD Function page 465
Evaluates the first coupon date which follows the settlement date.

COUPON_NUM Function page 443
Evaluates the number of coupons payable between the settlement 
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date and the maturity date.

COUPON_PCD Function page 467
Evaluates the coupon date which immediately precedes the settle-
ment date.

CSINTERP Function page 111
Computes a cubic spline interpolant, specifying various endpoint 
conditions. The default interpolant satisfies the not-a-knot 
condition.

CSSHAPE Function page 116
Computes a shape-preserving cubic spline.

CSSMOOTH Function page 159
Computes a smooth cubic spline approximation to noisy data by 
using cross-validation to estimate the smoothing parameter or by 
directly choosing the smoothing parameter.

CUM_INTR Function page 399
Evaluates the cumulative interest paid between two periods.

CUM_PRINC Function page 401
Evaluates the cumulative principal paid between two periods.

DATETODAYS Function  page 559
Computes the number of days from January 1, 1900, to the given 
date.

DAYSTODATE Procedure page 558
Gives the date corresponding to the number of days since 
January 1, 1900.

DEPREC_AMORDEGRC Function page 449
Evaluates the depreciation for each accounting period. During the 
evaluation of the function a depreciation coefficient based on the 
asset life is applied.

DEPREC_AMORLINC Function page 450
Evaluates the depreciation for each accounting period.

DEPRECIATION_DB Function page 402
Evaluates the depreciation of an asset using the fixed-declining 
balance method.

DEPRECIATION_DDB Function page 404
Evaluates the depreciation of an asset using the double-declining 
balance method.

DEPRECIATION_SLN Function page 406



 B-5

Evaluates the depreciation of an asset using the straight-line 
method.

DEPRECIATION_SYD Function page 407
Evaluates the depreciation of an asset using the sum-of-years dig-
its method.

DEPRECIATION_VDB Function page 408
Evaluates the depreciation of an asset for any given period using 
the variable-declining balance method.

DERIV Function page 91
Numerical differentiation using three-point Lagrangian

DISCOUNT_PR Function page 452
Evaluates the price of a security sold for less than its face value.

DISCOUNT_RT Function page 454
Evaluates the interest rate implied when a security is sold for less 
than its value at maturity in lieu of interest payments.

DISCOUNT_YLD Function page 456
Evaluates the annual yield of a discounted security.

DOLLAR_DECIMAL Function page 410
Converts a fractional price to a decimal price.

DOLLAR_FRACTION Function page 411
Converts a decimal price to a fractional price.

DURATION Function page 459
Evaluates the annual duration of a security where the security has 
periodic interest payments.

DURATION_MAC Function page 463
Evaluates the modified Macauley duration of a security.

EFFECTIVE_RATE Function page 412
Evaluates the effective annual interest rate.

EIG Function page 91
Computes the eigenexpansion of a real or complex matrix A. If the 
matrix is known to be symmetric or Hermitian, a keyword can be 
used to trigger more efficient algorithms.

EIGSYMGEN Function page 95
Computes the generalized eigenexpansion of a system Ax = λBx. 
The matrices A and B are real and symmetric, and B is positive 
definite.
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ELE Function page 382
Evaluates the complete elliptic integral of the second kind E(x).

ELK Function page 381
Evaluates the complete elliptic integral of the kind K(x).

ELRC Function page 387
Evaluates an elementary integral from which inverse circular func-
tions, logarithms and inverse hyperbolic functions can be 
computed.

ELRD Function page 384
Evaluates Carlson’s elliptic integral of the second kind RD(x, y, z).

ELRF Function page 383
Evaluates Carlson’s elliptic integral of the first kind RF(x, y, z).

ELRJ Function page 386
Evaluates Carlson’s elliptic integral of the third kind RJ (x, y, z, ρ)

ERF Function page 356
Evaluates the real error function erf(x). Using a keyword, the 
inverse error function erf-1(x) can be evaluated.

ERFC Function page 358
Evaluates the real complementary error function erf(x). Using a 
keyword, the inverse complementary error function erf-1(x) can be 
evaluated.

FAURE_INIT Function page 524
Initializes the structure used for computing a shuffled Faure sequence.

FAURE_NEXT_PT Function page 528
Generates a shuffled Faure sequence.

FCDF Function page 542
Evaluates the F distribution function. Using a keyword, the inverse 
of the F distribution function can be evaluated.

FCN_DERIV Function page 224
Computes the first, second, or third derivative of a user-supplied 
function.

FCNLSQ Function page 141
Computes a least-squares fit using user-supplied functions.

FFTCOMP Function page 273
Computes the discrete Fourier transform of a real or complex 
sequence. Using keywords, a real-to-complex transform or a two-
dimensional complex Fourier transform can be computed.
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FFTINIT Function page 282
Computes the parameters for a one-dimensional FFT to be used 
in function FFTCOMP with keyword Init_Params.

FMIN Function page 310
Finds the minimum point of a smooth function f (x) of a single vari-
able using function evaluations and, optionally, through both 
function evaluations and first derivative evaluations.

FMINV Function page 317
Minimizes a function f (x) of n variables using a quasi-Newton 
method.

FREQTABLE Function page 494
Tallies observations into a one-way frequency table

FRESNEL_COSINE page 388
Evaluates the cosine Fresnel integral.

FRESNEL_SINE Function page 389
Evaluates the sine Fresnel integral.

FUTURE_VAL_SCHD Function page 415
Evaluates the future value of an initial principal taking into consid-
eration a schedule of compound interest rates.

FUTURE_VALUE Function page 413
Evaluates the future value of an investment.

GAMMA Function page 365
Evaluates the real gamma function Γ(x).

GAMMACDF Function page 547
Evaluates the gamma distribution function.

GAMMAI Function page 368
Evaluates the incomplete gamma function γ(α,x).

GENEIG Procedure page 98
Computes the generalized eigenexpansion of a system Ax = λBx.

GQUAD, n, array, array page 220
Computes a Gauss, Gauss-Radau, or Gauss-Lobatto quadrature 
rule with various classical weight functions.

HYPERGEOCDF Function page 553
Evaluates the hypergeometric distribution function.

INT_PAYMENT Function page 416
Evaluates the interest payment for an investment for a given 
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period.

INT_RATE_ANNUITY Function page 417
Evaluates the interest rate per period of an annuity.

INT_RATE_RETURN Function page 419
Evaluates the internal rate of return for a schedule of cash flows.

INT_RATE_SCHD Function page 420
Evaluates the internal rate of return for a schedule of cash flows. It 
is not necessary that the cash flows be periodic.

INT_RATE_SEC Function page 461
Evaluates the interest rate of a fully invested security.

INTERPOL Function page 185
Linear interpolation of vectors

INTFCN Function page 193
Integrates a user-supplied function using different combinations of 
keywords and parameters.

INTFCN_QMC Function page 217
Integrates a function on a hyper-rectangle using a quasi-Monte 
Carlo method.

INTFCNHYPER Function page 215
Integrates a function on a hyper-rectangle.

INV Function page 14
Computes the inverse of a real or complex, square matrix.

KELVIN_BEI0 page 395
Evaluates the Kelvin function of the first kind, bei, of order zero. 

KELVIN_BER0 Function page 394
Evaluates the Kelvin function of the first kind, ber, of order zero. 

KELVIN_KEI0 Function page 398
Evaluates the Kelvin function of the second kind, kei, of order 
zero. 

KELVIN_KER0 Function page 397
Evaluates the Kelvin function of the second kind, ker, of order 
zero.

LAPLACE_INV Function page 291
Computes the inverse Laplace transform of a complex function.

LINLSQ Function page 324



 B-9

Solves a linear least-squares problem with linear constraints.

LINPROG Function page 331
Solves a linear programming problem using the revised simplex 
algorithm.

LNBETA Function page 363
Evaluates the logarithm of the real beta function ln β(x,y).

LNGAMMA Function  page 367
Evaluates the llogarithm of the absolute value of the gamma func-
tion log Γ(x).

LUFAC Procedure page 20
Computes the LU factorization of a real or complex matrix.

LUSOL Function page 15
Solves a general system of real or complex linear equations 
Ax = b.

MACHINE Function page 565
Returns information describing the computer’s arithmetic.

MATRIX_NORM Function page 572
Computes various norms of a rectangular matrix, a matrix stored 
in band format, and a matrix stored in coordinate format.

MATURITY_REC Function page 474
Evaluates the amount one receives when a fully invested security 
reaches the maturity date.

MINCONGEN Function page 343
Minimizes a general objective function subject to linear equality/
inequality constraints.

MOD_INTERN_RATE Function page 422
Evaluates the modified internal rate of return for a schedule of 
periodic cash flows.

NET_PRES_VALUE Function page 423
Evaluates the net present value of a stream of unequal periodic 
cash flows, which are subject to a given discount rate.

NLINLSQ Function page 324
Solves a nonlinear least-squares problem using a modified 
Levenberg-Marquardt algorithm.

NOMINAL_RATE Function page 425
Evaluates the nominal annual interest rate.
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NONLINPROG Function page 338
Solves a general nonlinear programming problem using the suc-
cessive quadratic programming (QP) algorithm.

NORM Function page 570
Computes various norms of a vector or the difference of two 
vectors.

NORMALCDF Function page 534
Evaluates the standard normal (Gaussian) distribution function. 
Using a keyword, the inverse of the standard normal (Gaussian) 
distribution can be evaluated.

NUM_PERIODS Function page 426
Evaluates the number of periods for an investment for which peri-
odic and constant payments are made and the interest rate is 
constant.

ODE Function page 534
Solves an initial value problem, which is possibly stiff, using the 
Adams-Gear methods for ordinary differential equations. Using 
keywords, the Runge-Kutta-Verner fifth-order and sixth-order 
method can be used if the problem is known not to be stiff.

PAYMENT Function page 427
Evaluates the periodic payment for an investment.

PDE_MOL Function page 245
Solves a system of partial differential equations of the form 
ut = f(x, t, u, ux, uxx)  using the method of lines. The solution is 
represented with cubic Hermite polynomials.

POISSON2D Function page 263
Solves Poisson’s or Helmholtz’s equation on a two-dimensional 
rectangle using a fast Poisson solver based on the HODIE finite-
difference scheme on a uniform mesh.

POISSONCDF Function page 555
Evaluates the Poisson distribution function.

PRES_VAL_SCHD Function page 430
Evaluates the present value for a schedule of cash flows. It is not 
necessary that the cash flows be periodic.

PRESENT_VALUE Function page 429
Evaluates the net present value of a stream of equal periodic cash 
flows, which are subject to a given discount rate..

PRICE_MATURITY Function page 472
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Evaluates the price, per $100 face value, of a security that pays 
interest at maturity.

PRICE_PERIODIC Function page 469
Evaluates the price, per $100 face value, of a security that pays 
periodic interest.

PRINC_PAYMENT Function page 432
Evaluates the payment on the principal for a specified period.

QRFAC Procedure page 32
Computes the QR factorization of a real matrix A.

QRSOL Function page 29
Solves a real linear least-squares problem Ax = b.

QUADPROG Function page 335
Solves a quadratic programming (QP) problem subject to linear 
equality or inequality constraints.

RADBE Function page 184
Evaluates a radial-basis fit computed by RADBF.

RADBF Function page 174
Computes an approximation to scattered data in Rn for n>=2 using 
radial-basis functions.

RANDOM Function page 506
Generates pseudorandom numbers

RANDOMOPT Procedure page 502
Control of the random number seed and uniform (0,1) generator

RANKS Function page 497
Ranks, normal scores, or exponential scores

SCAT2DINTERP Function page 171
Computes a smooth bivariate interpolant to scattered data that is 
locally a quintic polynomial in two variables.

SETTLEMENT_DB Function page 445
Evaluates the number of days starting with the beginning of the 
coupon period and ending with the settlement date.

SMOOTHDATA1D Function page 167
Smooth one-dimensional data by error detection.

SP_BDFAC Procedure page 62
Compute the LU factorization of a matrix stored in band storage 
mode..
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SP_BDPDFAC Function page 74
Compute the RTR Cholesky factorization of symmetric positive 
definite matrix, A, in band symmetric storage mode.

SP_BDPDSOL Function page 72
Solve a symmetric positive definite system of linear equations Ax 
= b in band symmetric storage mode. 

SP_BDSOL Function  page 59
Solve a general band system of linear equations Ax = b. 

SP_CG Function page 79
Solve a real symmetric definite linear system using a conjugate 
gradient method. Using keywords, a preconditioner can be 
supplied.

SP_GMRES Function page 76
Solve a linear system Ax = b using the restarted generalized mini-
mum residual (GMRES) method.

SP_LUFAC Function page 54
Compute an LU factorization of a sparse matrix stored in either 
coordinate format or CSC format. 

SP_LUSOL Function page 49
Solve a sparse system of linear equations Ax = b. 

SP_MVMUL Function page 82
Compute a matrix-vector product involving sparse matrix and a 
dense vector.

SP_PDFAC Function page 68
Solve a sparse symmetric positive definite system of linear equa-
tions Ax = b. 

SP_PDSOL Function page 65
Solve a sparse symmetric positive definite system of linear equa-
tions Ax = b. 

SPINTEG Function page 137
Computes the integral of a one- or two-dimensional spline.

SPVALUE Function page 132
Computes values of a spline or values of one of its derivatives.

SVDCOMP Function page 36
Computes the singular value decomposition (SVD), A=USVT, of a 
real or complex rectangular matrix A. An estimate of the rank of A 
also can be computed.
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TBILL_PRICE Function page 476
Evaluates the price per $100 face value of a Treasury bill.

TBILL_YIELD Function page 477
Evaluates the yield of a Treasury bill.

TCDF Function page 544
Evaluates the Student’s t distribution function.

WgSplineTool Procedure page 162
Widget-based interface

YEAR_FRACTION Function page 478
Evaluates the fraction of a year represented by the number of 
whole days between two dates.

YIELD_MATURITY Function page 480
Evaluates the annual yield of a security that pays interest at 
maturity.

YIELD_PERIODIC Function page 482
Evaluates the yield of a security that pays periodic interest.

ZEROFCN Function page 300
Finds the real zeros of a real function using Müller’s method.

ZEROPOLY Function page 298
Finds the zeros of a polynomial with real or complex coefficients 
using the companion matrix method or, optionally, the Jenkins-
Traub, three-stage algorithm.

ZEROSYS Function page 304
Solves a system of n nonlinear equations using a modified Powell 
hybrid algorithm.
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Index 

A
abampere   562
Abcoulomb   562
Abvolt   563
acre   562
Adams’ method   227, 230

implicit   233
Airy functions   390
ampere   562
AMU   562
Angstrom   562
ANSI/IEEE 754-1985   567
approximations

scattered data   108
smooth cubic splines   159

arbitrary dimension quadrature   189
area   562
astronomical unit   561
ATM   562
atmosphere   562
atmospheric pressure, standard   561
atomic mass unit   561
atto   563
AU   562
Avogadro’s number   561

B
band storage mode   572
bar   562
base of natural logs   561
basic uniform generator   489
basis function   141
Bessel function

first kind   372
modified

first kind   370
second kind   374

second kind   376
Bessel functions   378, 379
beta distribution   512, 523
beta function

real   361
incomplete   364
logarithmic   363

bilinear interpolate   186
binomial distribution   513
bisection process   194
bivariate quadrature   189
bivariate quintic polynomial   172
Blom normal scores   499
Boltzman’s constant   561
bond functions

accrued interest maturity   433
accrued interest period   435
bond equivalent yield   437
convexity   439
coupon date   465, 467
coupon days   441
coupon days - next   447
coupon numbers   443
depreciation accounting period   449, 

450
discount price   452
discount rate   454
discount yield   456
duration   459
interest rate security   461
Macauley duration   463
maturity received   474
price maturity   472
price periodic   469
settlement db   445
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tbill price   476
tbill yield   477
year fraction   478
yield maturity   480
yield periodic   482

B-splines   106
least-squares approximations

one-dimensional   146, 148
one-dimensional   121, 138
two-dimensional   138

BTU   562

C
Catalan’s constant   561
cauchy distribution   513
Cauchy principle value   209, 210
Celsius   562
centi   563
charge   562
Chebyshev moments   205
chi-square distribution   514
chi-squared

goodness-of-fit test   490, 491
Cholesky factorization

symmetric nonnegative definite   42
symmetric positive definite   27

Clenshaw-Curtis formula   201, 206
compiler   557, 578
concavity   116
condition numbers   17, 21, 89
constants

computer   565
mathematical and physical   560

constraints   154
convolution, discrete of 1D arrays   285
Cooley-Tukey algorithm   271
coordinate format   572
Cornish-Fisher expansion   544
correlation, descrete of 1D arrays   288
cosine Fresnel integrals   388
Coulomb   562
cross-validation   160
cubic splines   106, 111

approximations
smooth   159

interpolation
endpoint conditions   111
shape-preserving   116

smoothing   108, 109
current   562

D
data sets, statistical   557
dates

calculating   557
epoch to date   558
number of days   559

deca   563
deci   563
Delaunay triangulation   171
derivatives   224
differential equations, ordinary (ODE)

general   227
mildly stiff   233
Rossler system   238
Runge-Kutta method   234

differentiation
numerical   189, 223

discrete Fourier cosine transformation   
273

discrete uniform distribution   517
distance   562
distribution functions

beta probability   549
binomial distribution   551
chi-squared, noncentral   538
F distribution   542
gamma distribution   547
hypergeometric   553
normal

bivariate   536
Gaussian   534

inverse   534
inverse   534

Poisson   555
Student’s t   544

dyne   562

E
eigenexpansion   91
eigenvalues   98
eigenvalues and eigenvectors

accuracy   88
error analysis   88
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general   91
generalized, reformulating   89
symmetric positive definite   95

eigenvectors   98
electron charge   561
electron mass   561
electron volt   561
elliptic integrals   381, 383, 384
endpoint conditions   111
energy   562
equality/inequality constraints   343
Equation   291, 293
Erg   562
Erlang distribution   548
error function

real   356
complementary   358

error handling   557
informational error codes   579

errors
alert   xix
fatal   xix
note   xix
terminal   xix
warning   xix

Euler’s constant   561
exponential distribution   511
exponential mix distribution   514
exponential order statistics   500
exponential scores   497

F
factorization

Cholesky   27
LU   20
SVD   36

Fahrenheit   562
farad   563
Faraday constant   561
fast Fourier transforms   271

complex
one-dimensional   277

continuous vs. discrete   272
real

one-dimensional   299, 300, 367, 
372, 374

fatal errors   xix
Faure   526, 529

Faure sequence   524, 528
faure_next_point   528

femto   563
FFT, see fast Fourier transforms
financial functions

cumulative interest   399
cumulative principal   401
declining balance depreciation   402
depreciation

double-declining balance   404
straight-line   406
sum-of-years   407
variable declining balance   408

dollar decimal   410
dollar fraction   411
effective rate   412
future value   413
future value schedule   415
interest payment   416
interest rate annuity   417
internal rate of return   419
internal rate of return schedule   420
modified internal rate of return   422
net present value   423
nominal rate   425
number of periods   426
payment   427
present value   429
present value schedule   430
principal payment   432

fine structure   561
first-order ODEs   228
fixed points   221
force   562
Fourier sine, cosine transforms   193
frequencies

resolvable   276
resolving dominant   280

frequency   562
frequency tables

one-way   494

G
gamma distribution   511
gamma function

real   365
incomplete   368
logarithmic   367
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gas constant   561
Gauss   563
Gauss Legendre quadrature, 3-point   222
Gauss quadrature   189, 192, 220

10-point   194
Gauss-Kronrod rules   196, 197, 210

21-point   194
7/15   206

Gauss-Lobatto quadrature   220
points and weights   221

Gauss-Radau quadrature   220
points   221

Gauss-Seidel method   147
Gear’s method   227, 230
general discrete distribution   217
generalized eigensystems   87
generalized inverses   37
generators

basic uniform   489
random-number   487
shuffled   489

geometric distribution   515
geometric functions   557
geometry

vector norms   570
GFSR   502
giga   563
globally adaptive scheme   194
gravitational constant   561
Gray code   527, 530
Gregorian calendar   559
gridded data   125

H
Hardy multiquadratic   176
Henry   563
Hertz   562
hypergeometric distribution   515
hyper-rectangle   215, 217

I
ideal gas, standard volume   561
IEEE arithmetic   568
ill-conditoning   5
incomplete gamma function   368
Informational Error   xviii

initial value problem (IVP)   227, 230
nonstiff   227
stiff   227

integrals
n-dimensional iterated   216
two-dimensional iterated   193, 213, 

214
integration   217

arbitrary dimension quadrature   189
Gauss quadrature   192, 220
multivariate

general   191
hyper-rectangle   215
two-dimensional   213, 214

spline, one or two-dimensional   137
univariate / bivariate

Cauchy principle   209, 210
Gauss-Kronrod rules   196, 197
general   190
infinite or semi-infinite interval   

203, 204
nonadaptive rule   211, 212
sine or cosine factor   205, 206
sine or cosine transform   207, 

208
smooth function   211, 212
with algebraic-logarithmic singu-

larities   200, 201
with singularity points   198, 199

interpolation
cubic spline

endpoint conditions   111
shape preserving   116

Lagrangian 3-point   223
scattered data   108

bilinear   186
radial-basis fit   184
radial-basis functions   174

user-supplied   179
smooth bivariate   171
three-dimensional fit   181

spline
knot sequence   128
one-dimensional   124
two-dimensional   123

inverse
complementary error function   358
error function   356

inverse matrix   14
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IVP, see initial value problem   227

J
Jacobian matrix   324
Jenkins-Traub three-stage algorithm   298
Joule   562
Julian calendar   558, 559

K
Kelvin   562
kilo   563
knot sequence   121
knots   121, 128

L
Lagrangian interpolation

3-point   223
least-squares fit   104, 108, 167

B-spline
one-dimensional   146
two-dimensional   148

spline
constrained   154
one- or two-dimensional   144

user-supplied function   141
least-squares solution   4
Lebesque measure   526, 529
Levenberg-Marquardt algorithm, modified   324
library version   557, 578
linear constraints   45, 157
linear eigensystems   87
linear least-squares problem   45
linear programming problems   331
linear system solution

general   3, 15
Hermitian positive definite   25
matrix factorization   3
multiple right-hand sides   4, 18
symmetric nonnegative definite   39
symmetric positive definite   24

logarithm, gamma function   367
logarithm, real beta function   363
logarithmic distribution   516
lognormal distribution

random numbers

lognormal distribution   516
low-discrepancy   527, 530
LU factorization   20

M
machine constants   557
magnetic induction   563
mass   562
mathematical constants   560
matrices, sparse

See sparse matrices   5
matrices, sparse, see sparse matrices
matrix

notation   5
matrix factorization   3
matrix inversion

linear system solution   3
Maxwell   563
mega   563
micro   563
micron   562
mill   562
milli   563
minimization   307, 343

linearly constrained   309
quadratic programming   335
simplex algorithm   331

nonlinearly constrained   309
successive quadratic program-

ming method   338
unconstrained   308

nonlinear least squares   324
quasi-Newton method   317, 

319
univariate   310

missing values   xviii
modified Bessel function   370
mole   563
Monte Carlo method   488
Moore-Penrose inverses   41, 43
Müller’s method   300
multiple right-hand sides   4
multivariate normal distribution   509, 

512, 524
multivariate quadrature   191
myria   563
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N
NaN (Not a Number)   xviii
natural logs, base   561
n-dimensional iterated integrals   216
negative binomial   517
Newton’s Method   116, 305
nino   563
noisy data   152
noncentral chi-squared distribution function   

538
nonlinear least-squares problems   324
nonstiff IVPs   227
normal distribution   510
normal scores   497
not-a-knot condition   111, 124, 134
numerical differentiation   189, 223
numerical ranking   497
Nyquest phenomenon   276

O
ODE, see differential equations   227
Ohm   563
one-way frequency table   494
operating system   557, 578
ordinary differential equation, see differential 

equations   227
over-determined system   4
overflow   xviii

P
parsec   562
partial differential equations   229
partial pivoting   16
Paterson rules, nested   212
periodic interpolant   112
physical constants   560
Pi   562
pico   563
piecewise polynomials   105, 109, 137
Planck’s constant   561
poise   562
Poisson distribution   511, 522
Powell hybrid algorithm   304
pressure   562

probability distribution functons, see distri-
bution functions   533

proton mass   562
pseudorandom   488

Q
QP, see quadratic programming   336
QR factorization

linear least squares   29
real matrix   32

quadratic programming
convex problems   309, 336
dual algorithm   309, 336
linearly constrained   335
successive algorithm   310, 338

quadrature points and weights   220
quasi-Monte Carlo   217
quasi-Newton method   319

R
radial-basis fit   174
radial-basis functions   108
random numbers   488

beta distribution   512, 523
binomial distribution   513
cauchy distribution   513
chi-squared distribution   514
control the seed   502
discrete uniform distribution   517
exponential distribution   511
exponential mix distribution   514
gamma distribution   511
generate pseudorandom numbers   

506
geometric distribution   515
hypergeometric distribution   515
logarithmic distribution   516
multivariate normal distribution   509, 

512, 524
negative binomial   517
normal distribution   510
Poisson distribution   511, 522
select the form   502
Student’s t distribution   518
triangular distribution   518
von Mises distribution   518
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Weibull distribution   518
ranks   36, 497
real beta function   361
real complementary error function   358
real error function   356
real gamma function   365
real incomplete beta function   364
rectangular matrix   572
resolvable frequencies   276
root of a system   298
Runge-Kutta method   227
Runge-Kutta-Verner method

fifth-order   228, 230
sixth-order   228, 230

Rydberg’s constant   562

S
Savage scores   498
scaling results of RANDOM   523
scattered data

approximation   108
interpolation   108

serial number   557, 578
shape-preserving cubic splines   116
shuffled generators   489
shuffling   502
simplex algorithm   331
simulations

restarting   488
streams   488
studies   488

sine Fresnel integrals   389
single value decomposition (SVD)   4, 36
singularity   5
slug   562
smooth data

cubic spline interpolant   168
error detection   167

smoothed data   167
smoothing parameter   159
smoothing spline   160
Snedecor’s F random variable   542
SP_BDFAC Procedure   62
SP_BDPDFAC Function   74
SP_BDPDSOL Function   72
SP_BDSOL Function   59
SP_CG Function   79
SP_GMRES Function   76

SP_LUFAC Function   54
SP_LUSOL Function   49
SP_MVMUL Function   82
SP_PDFAC Function   68
SP_PDSOL Function   65
sparse matrices

band storage format   10
Cholesky factorization of symmetric 

positive definite   74
compressed sparse column format   

13
conjugate gradient method   79
direct methods   5
general band system linear equation 

solution   59
introduction   5
iterative methods   6
linear equation solution   49
LU factorization of   54
LU factorization of band storage 

matrix   62
matrix storage modes   7
matrix-vector product of sparse 

matrix and dense vector   82
positive definite system   68
restarted generalized minimum 

residual method   76
sparse coordinate storage format   7
storage formats, choosing   12
symmetric positive definite system   

72
symmetric positive definite system 

solution   65
utilities   7

special functions   351
speed of light   561
splines   106

approximation
smooth cubic   159

cubic   106
evaluation   132
integration

one- or two-dimensional   137
interpolation

knot-sequence   128
one-dimensional   124
two-dimensional   123

least squares
constrained   154
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one- or two-dimensional   144
smoothing   160
structures for   109
subspace   144
tensor-product   107, 121
widget-based interface   162

standard atmospheric pressure   561
standard gravity   562
standard volume ideal gas   561
statampere   562
statcoulomb   562
Stefan-Boltzman   562
stiff IVPs   227
stoke   562
Student’s t distribution   518
Student’s t distribution function   544
subspace   141
symmetric positive definite system   24
system variables

!Cmath_Err   xviii
!Error   xviii
!Quiet   xviii

T
tabular data   191
temperature   562
tensor-product splines   107, 121
tera   563
terminal errors   xix
Tesla   563
time   562
time constraints   228
triangular distribution   518
triple point of water   562
Tukey normal scores   500
two-dimensional iterated integrals   193, 213, 

214

U
unit circle   508
univariate quadrature   189
utility functions   557

V
Van der Waerden normal scores   500

variance-covariance matrix   509
vector norms   570

1-norm   570, 571
Euclidean   571
infinity   571

viscosity   562
volt   563
voltage   563
volume   562
von Mises distribution   518

W
warning errors   xix
water, triple point   562
watt   562
Weber   563
Weibull distribution   518
widgets

interfaces
for computing spline fit   162

Wilson-Hilferty approximation   539
work   562

Z
zeros of a function   298

Muller’s method   300
zeros of a polynomial   297

Jenkins-Traub three-stage algorithm   
298

zeros of a system   304
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